
XMM-Newton Science Analysis System Page: 1

embadpixfind

January 25, 2021

Abstract

Find EPIC-MOS bad pixels for one node of one EPIC-MOS CCD.

1 Instruments/Modes

Instrument Mode

EPIC MOS IMAGING

2 Use

pipeline processing yes
interactive analysis yes

3 Description

embadpixfind aims at finding bad pixels in an EPIC-MOS image in a completely automatic way, by
taking advantage of the broad PSF in pixel units, which makes it impossible to mistake a source for a
bad pixel.

3.1 Preparatory work

Call emeventsproj with rejectbadevents=Y to project the events file to an image. An image built by
evselect would be accepted as well, but would not include the secondary pixels of multiple events (this
may miss weak bad pixels next to a strong one).
For optimal electronic noise rejection, the events file should be built by successive calls to emevents

(analysepatterns=N flagbadpixels=N splitdiagonals=N randomizeposition=N allow it to run
much faster) and emenergy (correctcti=N correctgain=N randomizeenergy=N allow it to run
much faster).

For calibration purposes, it is possible to improve the statistics (and the sensitivity to weak bright pixels
or dark pixels) by stacking many images output of emeventsproj on top of one another before calling
embadpixfind.



XMM-Newton Science Analysis System Page: 2

3.2 Basic algorithm

embadpixfind estimates the local statistical average µ in a running window around each pixel by taking
the smallest of the average or the median + 1 (1 is added to take care of the case when the median is 0,
the median allows to remove the effect of other bad pixels in the vicinity). Then it builds a significance
map via the Li and Ma criterion (Li & Ma 1983, ApJ 272, 317):

S =
√
2

√

Non ln
Non

µtot

+Noff ln
µ

µtot

(1)

where Non is the number of counts in the current pixel, Noff = Npix µ is the number of reference counts,
Npix is the number of pixels used to compute the local average ((2 halfwidth2d + 1)2 - 1, if none of the
pixels in the window has been rejected already), Ntot = Non +Noff is the total number of counts in the
window, and µtot = Ntot/(Npix + 1) is the average number of counts per pixel in the window.

This significance map is then used to locate the most promising candidate bad pixels. They are examined
in turn, in decreasing order. The exact probability that the current excess is a statistical anomaly of a
flat distribution is computed from the cumulative binomial law:

P (k ≥ Non) =

Ntot
∑

k=Non

pB(k,Ntot, q) = Iq(Non, Noff + 1) (2)

where q = 1/(Npix + 1) is the probability that a random count fall in the central pixel, and Ix(a, b) is
the incomplete beta function. This is significantly different from the probability estimated from Eq.(1)
for small numbers (Eq.3 gives a larger probability). If that probability is smaller than probathreshold,
the pixel is flagged as bright, the average is recomputed around the bad pixel ignoring it, and the loop
goes on. The loop stops when the next largest excess is smaller than the significance corresponding to
probathreshold.

3.3 Columns and rows

If findbadsegments=Y embadpixfind looks for bright rows and columns too. This is done by projecting
the image along rows and columns, and applying the same algorithm as above on the resulting 1-D vectors,
except the width of the 1-D window (2 halfwidth1D + 1) is normally chosen larger than that of the 2-D
window, to improve the background determination.
If a bright row or column is found, it is analysed to look for bright segments within. If it is found that
the rest of the row/column is compatible (to 10% probability) with the neighbouring rows/columns, then
only the bright segments are declared as bad. The minimum length of the bright segments is set such
that one expects about 1 count in that length in the normal (not bright) parts.

3.4 Intrinsic dispersion

Sometimes the distribution of the number of counts in the window around the tested pixel does not follow
the Poisson law at all, but is much broader. This is particularly true for columns at low energy, because
of charge transfer efficiency variations from one column to the next. This effect is of course more obvious
for large count rates, in particular within bright sources.

To avoid wrongly detecting columns as bad (either dark or bright), the observed dispersion in the distri-
bution is used to compute the significance of an excess assuming a Gaussian distribution. What is actually
measured is the average absolute deviation (this is more robust than the root mean square when a few
other bright pixels are present) divided by 0.8 (to recover the standard deviation when the distribution



XMM-Newton Science Analysis System Page: 3

is normal). The true significance is taken to be the smallest of the Gaussian estimate and the Poisson
one (from Eq.1). The cost of this security is to detect less easily groups of bad columns/rows, because
the observed dispersion is large even when the tested column/row is discounted.

In addition, the minratio parameter avoids detecting bright pixels, rows or columns with too small
contrast on observations with high statistics.

3.5 Dark features

If finddead=Y, embadpixfind looks for too dark pixels, rows and columns too. The Li and Ma formula
(Eq.1) is not used for dark pixels. The Gaussian significance is computed in the same way (but on the
negative side) and the cumulative binomial probability is computed from:

P (k ≤ Non) =

Non
∑

k=0

pB(k,Ntot, q) = I1−q(Noff , Non + 1) (3)

The statistics in a single observation is usually not enough to find any dark pixel, but dark rows or
columns may be found. The maxratio parameter avoids detecting ’grey’ pixels, rows or columns on
observations with high statistics.

Whatever findbright and finddead, dark and bright columns and rows are always searched for together
in order of decreasing significance (either positive or negative). This avoids finding spurious bright
columns/rows next to very dark ones, and vice-versa.

If one of findbright or finddead is set to False, the corresponding bad pixels/columns/rows are not
written to the output file.

3.6 Iteration

Each step in the detection process may affect the other steps. For example, detecting a bright row or
column may facilitate detecting a moderately bright pixel next to it. For that reason, the whole process
is iterated until nothing new is detected, or until the maximum number of iterations (set by the niter

parameter) is reached.

3.7 Calibration access

If usecal= Y, the uplinked bright pixels and known dead pixels (within the current window) are read
from the CAL and those pixels are ignored in computing the local median and the threshold.
Optionally (includedeadpixels parameter) one may include the dead pixels from the CAL in the out-
put list. It is also possible (ignoreccfbright parameter) to ignore the bright pixels declared in the
CCF and redetect them from the data. This does not apply to uplinked and dead pixels which ap-
pear dark in the data and cannot be detected in a single observation. If embadpixfind was called with
ignoreccfbright=Y includedeadpixels=Y, badpixmay be called with getnewbadpix=Y getotherbadpix=N
to keep only the bright pixels active in the current exposure while preserving the information about dead
pixels.

With usecal=N, the embadpixfind algorithm is not XMM specific at all and works on any image where
the normal structure size is larger than 5 pixels.



XMM-Newton Science Analysis System Page: 4

3.8 Incremental search

The default mode is to ignore the bad pixels file on input. If incremental=Y, embadpixfind reads the
bad pixels file on input, and ignores the pixels mentioned there in the search. On output the bad pixels
file contains both the original bad pixels and the newly found ones.

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

evimageset yes dataset ’ ’ none
Input image file (from emeventsproj)

badpixset no dataset badpix.out none
Output bad pixels file

incremental no boolean no yes/no
Add newly found bad pixels to the bad pixels file contents

probathreshold no real 1.10−6 > 0, < 1.10−3

False detection probability per pixel

halfwidth2d no integer 2 > 0
Half width for 2D searches (images)

findbadsegments no boolean yes yes/no
Look for bad segments of rows or columns as well

halfwidth1d no integer 3 > 0
Half width for 1D searches (columns/rows)

findbright no boolean yes yes/no
Look for too bright pixels, rows and columns

minratio no real 1.5 > 1
Minimum ratio to neighbours for bright features (when findbright=Y)

finddead no boolean yes yes/no
Look for too dark pixels, rows and columns

maxratio no real 0.5 > 0, < 1
Maximum ratio to neighbours for dark features (when finddead=Y)

niter no integer 10 > 0
Maximum number of iterations of the full detection process

usecal no boolean yes yes/no
Get uplinked and dead pixels from the CAL

includedeadpixels no boolean no yes/no



XMM-Newton Science Analysis System Page: 5

Include dead pixels from CAL in output list

ignoreccfbright no boolean no yes/no
Ignore the bright pixels declared in the CAL (except uplinked)

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

getParamValues03 (error)
keyword incompatibility between image and bad pixels files (incremental=Y)

getCalBadpix10 (warning)
bright pixel wrongly declared as uplinked in the CCF. That pixel is treated as not uplinked.
corrective action: inform SOC (this is a CCF error)

6 Input Files

1. Projected image file (from emeventsproj) as Integer*4 array in PRIMARY. If they exist, the
window keywords WINDOWX0, WINDOWDX, WINDOWY0 and WINDOWDY are read to avoid underes-
timating the median and average at the borders in window mode.

2. File with BADPIX extension (if incremental=Y) output of badpixfind, embadpixfind or
badpix.

7 Output Files

1. Bad pixels file (for badpix) as BADPIX extension with RAWX, RAWY, TYPE, YEXTENT and
BADFLAG Integer*2 columns.

8 Algorithm

Read the parameters

Define goodPixel array, set to True

if incremental then

Read the bad pixels already in file



XMM-Newton Science Analysis System Page: 6

goodPixel(bad pixels) = False

endif

if usecal then

Read the bad pixels in CAL

goodPixel(uplinked and dead pixels) = False

if not ignoreccfbright then goodPixel(bright pixels) = False

if includedeadpixels then Write dead pixels to output list

endif

Read map = projected image

Iterate

call findAllBad(map, goodPixel, bad)

until nothing new is found or niter is reached

Write bad pixels file

subroutine findAllBad(map, goodPixel, bad)

! Get local average around each pixel and estimated significance

call avMedFilter(map, goodPixel, medsmooth, badtest)

! Look for bright pixels

call findBadPix(map, goodPixel, medsmooth, badtest, False, bad)

if findbadsegments then

! Look for bright/dark columns

profil = sum(map,2)

call findBad1D(profil, bad)

! Look for bright/dark rows

profil = sum(map,1)

call findBad1D(profil, bad)

Update goodPixel and medsmooth/badtest around bad columns/rows

endif

! Look for dark pixels

call findBadPix(map, goodPixel, medsmooth, badtest, True, bad)

end subroutine findAllBad

subroutine avMedFilter(map, goodPixel, medsmooth, badtest)

Loop over current pixel

Consider all good pixels in window around current pixel

Extract average (or median+1 if smaller) into medsmooth

Estimate dispersion from average absolute deviation divided by 0.8

Estimate significance S1 of excess using Gaussian law

If larger than 3, estimate significance S2 of excess using Li and Ma

badtest = min(S1,S2)

endloop

end subroutine avMedFilter

subroutine findBadPix(map, goodPixel, medsmooth, badtest, negative, bad)

Loop over current bad pixel



XMM-Newton Science Analysis System Page: 7

Find maximum in badtest (minimum if negative) down to probathreshold

Get probability of excess using binomial law

if probability < probathreshold then

add bad pixel to list

Update goodPixel and medsmooth/badtest around maximum

endif

endloop

end subroutine findBadPix

subroutine findBad1D(profil, psf1D, bad)

Find bad columns in profil (same as findBadPix)

Loop over bad columns

Get expected distribution along column from its neighbours

width = 1/(expected count rate per pixel)

Get running integral over bins of width pixels

While total(rest of column) larger (lower if negative) than expected

Find maximum integral (minimum if negative)

Remove segment of width pixels around it

endwhile

endloop

end subroutine findBad1D

9 Comments

• The algorithm to get the local average could be improved over using the local median. An
algorithm similar to that used in computing the offsets in emdiag should be considered.

References


