A SAS/xmmselect/evselect versus XANADU/xselect/fselect comparison

M. Cappi (ITeSRE – CNR; Bologna)

Outline:

Comparison of extracting standard products through

1) Command lines (fselect vs. evselect)

2) GUIs Tools (flaunch vs sas)

3) Standard User–Interface Tools
 (xselect vs. xmmselect)

XANADU–ftools: V5.0.1
SAS: V5.0 (Dec. 3rd)
Extracting Lightcurves

<table>
<thead>
<tr>
<th>Left: XANADU</th>
<th>Right: SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td>Commands</td>
</tr>
<tr>
<td>parameters</td>
<td>parameters</td>
</tr>
<tr>
<td>actions</td>
<td>actions</td>
</tr>
</tbody>
</table>

- **Left: XANADU**
 - `fselect`
 - PI, etc.
 - `.evt` \rightarrow `.evt`
 - `lcurve`
 - binsize etc.
 - `.evt` \rightarrow `.qdp`

- **Right: SAS**
 - `evselect`
 - PI, binsize, etc.
 - `.evt` \rightarrow `.ds`
 - `dsplot`
 - `.ds` \rightarrow `.agr`

Problems

- **Left: XANADU**
 - **Wrong Exposure**
 - (~2% high) (=TSTOP–TSTART)

- **Right: SAS**
 - **Grace less known/used than QDP**

Time Consumed

- **Left: XANADU**
 - (User–CPU) Time consumed: ~1.4 s

- **Right: SAS**
 - (User–CPU) Time consumed: ~11 s
Extracting Images

Left: XANADU

- **Commands**
 - Parameters
 - Actions

Right: SAS

- **Commands**
 - Parameters
 - Actions

fselect

- PATTERN, PI, etc.
- \(\text{.evt} \rightarrow \text{.evt} \)

evselect

- PATTERN, PI, binsize, etc.
- \(\text{.evt} \rightarrow \text{.ds} \)

f2dhisto

- binsize etc.
- \(\text{.evt} \rightarrow \text{.ima} \)

ds9

- \(\text{.evt} \rightarrow \text{.ds} \)

ds9

(User–CPU) Time consumed:

- ~5 s

Problems: None found

(User–CPU) Time consumed:

- ~19 s

Problems: None found
Left: XANADU

Commands

parameters

actions

Right: SAS

Commands

parameters

actions

Extracting Spectra

\[\text{xselect @script} \quad \text{PATTERN, PI, region, etc.} \]
\[\text{fselect} \quad \text{.evt} \rightarrow \text{.pi} \]
\[\text{fmodehead} \quad \text{TLMAX1} \]
\[\text{pi} \rightarrow \text{.pi} \]
\[\text{grppha} \]

(User–CPU) Time consumed:

\[\sim 30 \text{ s} \]

Problems: counts \(\sim 1\%\) larger due to different region extraction algorithm

\[\text{evselect} \quad \text{PATTERN, PI, region, binsize, etc.} \]
\[\text{.evt} \rightarrow \text{.ds} \]
\[\text{fmodehead} \quad \text{TLMAX1} \]
\[\text{.ds} \rightarrow \text{.ds} \]
\[\text{grppha} \]

(User–CPU) Time consumed:

\[\sim 18 \text{ s} \]

Problems: BACKSCAL wrong (always 3.6e5)
\(\Rightarrow \) Similar capabilities... (e.g. both allow scripts); but of course SAS is mandatory for XMM
Currently, two advantages of `xselect`:
already known to most users + allows easy scripts
The Standard User–Interface/interactive Tools is the most important for most GOs

<table>
<thead>
<tr>
<th></th>
<th>xselect</th>
<th>xmmselect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginners</td>
<td>Typing is not easy, but already known + easy to "save"</td>
<td>Clicking is easy, but not known + impossible to "save"</td>
</tr>
<tr>
<td>Typical</td>
<td>Scripts are user–friendly (extract curve, plot image...)</td>
<td>Scripts are user–UNfriendly (#!/usr/bin/sh ...+ very long strings of commands)</td>
</tr>
<tr>
<td>Experts</td>
<td>Scripts are powerfull + commands are fast</td>
<td>Scripts are powerfull but commands are slower</td>
</tr>
</tbody>
</table>

⇒ My suggestion is:
We shall really add "xmmselect logging" (for beginners) or/and "xmmselect scripting" (for typical&experts) output or/and make file scripts (for standard analysis) available to GO community.