Spectral and spatial deformations on piled-up sources

"a one case study, of MOS data"

Motivations:

- A number of sources are with high flux, generating pile-up
- Standard spectral and spatial analysis is no more valid,
- Large corrections to get absolute flux, spectral shape, spatial distribution...

Plan for this study:

- Step 1: measure pile-up effects on spectra and spatial distribution ... done
- Step 2: check against theoretical predictions... started
- Step 3: provide "standard analysis" route for piled-up sources... future

GRS 1758-258

MOS 1 & 2 in small window PN in large window

Count rate ~ 20 c/s

MOS 1

 21.87 ± 0.03 c/s (stable) (~ 6.6 counts/frame)

MOS 2

 21.65 ± 0.03 c/s (stable) (~ 6.6 counts/frame)

• Spectra and counts studied in concentric rings with following characteristics, with counts being for pattern 0 events :

R_in	R_out	Physical	counts	c/frame
arcsec	arcsec	pixels	/frame	/pixel
0	3	23	0.73	3.12e-2
3	6	70	1.04	1.48e-2
6	12	280	1.42	5.07e-3
12	24	1122	1.03	9.15e-4
24	44	3531	0.64	1.80e-4

- Look for spectral differences in different rings
- All study performed with pattern 0 events only, since pattern 0 the less sensitive to pile-up, especially regarding spectral effects

Results will be compared to encircled energy data from file XRT1_XENCIREN_0000.CCF (merci Jean)

This file show a strong energy dependence in the encircled energy

- Flux loss and pile-up was modelled using Jean Ballet pile-up program, together with the 1-D PSF calculated from the encircled energy CCF file and the pattern distribution at 1.5 keV
- Incoming flux was adjusted so that modelled observed rate equals the actual value of ~ 6 / frame

Numerical results from model are:

- Incident flux of 8.0 cts/frame needed to get 6.2 cts/frame detected, i.e. that the average flux loss is ~ 22 % for all patterns
- Pile-up and flux loss dependence for mono-pixels can be large :

Ring (arcsec)	piled-up fraction	<u>flux-loss</u>
central pixel	16.9 %	98.8 %
0.0 - 3.3	3.4 %	65.2 %
3.3 - 5.5	1.7 %	34.4 %
5.5 - 12.1	0.39 %	9.2 %
12.1 - 24.2	0.067 %	1.6 %
24.2 - 44.0	0.0074 %	0.2 %

Conclusions

- Spectral distorsion strong even when pattern 0 selected
- The energy dependence of the encircled energy CCF function does not seem to fit these data A flatter energy dependence in the wings would do better...
- The first rough attempt to use Jean's model looks promising, at least for flux loss corrections.
- Pile-up is essentially a local effect, and a good 2-D PSF description is needed to go further in modelling.
- Work need to be redone on more sources...