MOS CTI correction

Bruno Altieri

EPIC calibration meeting

Milano, 6-8 November 2001
Current MOS CTI

- In current SAS (v5.2, MOS CTI CCF v5) the CTI is under-corrected ==> line centroid is shifted to lower energies

- Discrepancy increasing with time (rev #)
 - By now (rev 340) it is about 25-30 eV at Mn energies
MOS CTI algorithm

- $X =$ serial loss, Y: parallel loss
- $\text{CTI} = \text{CTIX} \cdot \text{RAWX} + \text{CTIY} \cdot \text{RAWY}$

Current CTI correction:
- $\text{CTIX} = \delta T \cdot \text{rate}_x + (a_{0x\text{CCDi}} + b_{0x\text{CCDi}} \cdot \text{PHA})$
- $\text{CTIY} = \delta T \cdot \text{rate}_y \cdot (\text{PHA})^{1/2} + (a_{0y\text{CCDi}} + b_{0y\text{CCDi}} \cdot \text{PHA})$
 - with $(a,b)_{0X,Y}$ from ground-based test and $\delta T = T - T_0$

New CTI correction:
- $\text{CTIX} = a_{1x\text{CCDi}} + b_{1x\text{CCDi}} \cdot \text{PHA}$
- $\text{CTIY} = \delta T \cdot \text{rate}_{Y\text{CCDi}} \cdot (\text{PHA})^{\alpha_{\text{CCDi}}} + (a_{1Y\text{CCDi}} + b_{1Y\text{CCDi}} \cdot \text{PHA})$
 - with $(a,b)_{1X,Y}$ from ground-based test and $\delta T = T - T_{\text{launch}}$

- 6 parameters per CCD (4 for parallel loss and 2 for serial)
 - degradation rate and power index (0.55 to 0.7) CCD dependant!
- All parameters derived from a linear fit of MOS CTI plots.
MOS CTI new algo tests

- **New algorithm tested in:**
 - CCF MOS CTI **version 6**
 - combined with **cal-3.120**

- **Some slight over-correction for MOS1**

- **Still some under-correction for MOS2**
 - CTI underestimated because of high MOS2 calibration source?

- **Proposed for SAS v5.3**
Temperature-dependence of the gain?

- CTI correction does not work for cal-closed during the eclipse seasons, because of the EMAE T_{re} variations.

- EMAE T_{re} colder ==> CTI is less ==>over-correction in SAS.

- Effect worse for MOS2 than MOS1 and energy-dependent. δPHA = a . E/K1311 + b + c. PHA

- From rev 242 long calclosed : δPHA / δT_{re} ~1

- Effect worse in autumn eclipses, as T_{re} excusions are larger.

- Science observation less affected, but T_{re} stabilized at ~ 2 degrees lower in last eclipse season, ==> ~ 7 eV shift.
Comparison MOS/ pn

- Comparison MOS/pn on the hot spot of CasA observed in rev 306.
- MOS shifted by > 20 eV compared to pn in both LW and full-frame at high energies.
- Note: no mode-dependent CTI correction.
- Future: make a systematic comparison MOS/pn/RGS on N132D for soft energies.
MOS energy resolution

- Negligible line width increase after CTI correction at Mn energies

- \(\sim <1\% \quad \text{sigma} = 64\text{eV} \)

- No change or decrease at Al energies ! (35 eV)
Conclusions

• **Status:**
 – As the linear fit CTI degradation is a good approximation, the new refined CTI algo is appropriate.
 – Give rather good results when the temperature is stabilized.
 – **Suggest to implement it in SAS v5.3**

• **Future:**
 – work on a temperature correction
 – parameters to be refined in the future with more time leverage and new CTI plots from Andrea.
 • Tune the under-correction for MOS2
 – Understand shifts with PN and compare positions with RGS at low energies (cross-calibration)