PSF in-flight calibration
for MOS 1 and MOS 2 cameras

Simona Ghizzardi
Silvano Molendi
OVERVIEW

- The data set
- The analysis procedure
 - Building the radial profile
 - A model for the PSF
 - Fitting the radial profile
- Results
THE DATA SET

ENERGY RANGES:

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Range (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>[200-400]</td>
</tr>
<tr>
<td>0.6</td>
<td>[400-800]</td>
</tr>
<tr>
<td>1.0</td>
<td>[800-1200]</td>
</tr>
<tr>
<td>1.8</td>
<td>[1200-2400]</td>
</tr>
<tr>
<td>3.7</td>
<td>[2400-5000]</td>
</tr>
<tr>
<td>6.5</td>
<td>[5000-8000]</td>
</tr>
<tr>
<td>10.0</td>
<td>[8000-12000]</td>
</tr>
</tbody>
</table>

SOURCES:

ON-AXIS

- CAPELLA EXO0748-67 3C273
- GX13+1 HR1099 PKS0558
- LMC X-3 PKS0312 PSR0540

OFF-AXIS (> ~ 2 arcmin)

- HR1099 6.44 (arcmin)
- CAPELLA 9.00; 4.48
- (Capella) 9.48
- GX13+1 5.53; 9.00; 9.18; 1.92
- (GX13+1) 11.89; 2.74; 6.26
- 3C273 6.31; 1.55
- PSR0540 9.83
- (HCG016) 11.52
- (LMC) 11.9; 5.63
- OMC2/3 0.34 --> 10.44
FOR EACH MOS

• we merged the observations having
 • the same source target
 • the same pointing position
 • different filters and/or operative mode --->
 ---> different pile-up levels

• The centroid is determined accounting
 • for the mask of the detector

• For each curve a good fitting range
 • must be defined (points suffering
 • for pile-up must be excluded).
Algorithm for the averaged radial profile

- Energy selection and pattern (0-12) selection

BASIC METHOD

We bin the image (with larger bins at larger radii)

RADIAL PROFILE: \(\frac{dN}{dA} \) (the area is not \(2\pi rd \) because of the mask)

- each (squared) pixel is assigned to the (round) bin to which its CENTER belongs

- for these pixels it works fairly

- these pixels belong to two different bins in comparable fractions

- the effect is less important at larger radii

ADDITIONAL RECIPE ADDED TO THE BASIC PROCEDURE

We enclose each pixel in a circle.

If the circle is **fully** enclosed in the bin then the pixel is too.

If the circle is **partly** enclosed in another bin, the pixel may belong to two bins: *we divide such pixels in NSUBPIXELS*
A Model for the PSF

- we want an analytical function to describe the PSF
- according to the ground calibration results (FM1)
 \[\text{PSF} = \text{KING} + \text{GAUSS} \]
- In orbit PSF
 \[\text{PSF} = \text{KING} + \text{GAUSS} + \text{BKG} \]

BKG in the data is high and Gauss component becomes negligible. Fitting is Gauss parameters-insensitive.

- Data often suffer of pile-up. The King slope is well sampled but a large set of data is not useful for the core radius.
King profile

King = \frac{A}{\left[1 + \left(\frac{r}{r_c}\right)^2\right]^\alpha}

Two shape parameters: core radius and slope.

IT CAN BE INTEGRATED ANALYTICALLY IN rdr!!!
Fitting the radial profiles

In order to enhance the statistics, we fit simultaneously the different curves with different pile-up levels

\[\text{PSF} = \text{King} + \text{BKG} \]

\(\alpha \) e \(r_c \) are the same for the different curves

BKG and the normalization are different for each curve

for each energy and off-axis angle we derive \(\alpha \) and \(r_c \).
FOR FIXED OFF-AXIS

\[r_c = r_c(E, \theta) \]

\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

tends to decrease when energy increases (LINEAR).

SLOPE:

the slope is roughly constant with energy (slightly decreasing - LINEAR).

OFF-AXIS = 0.15 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED OFF-AXIS

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

tends to decrease when energy increases (LINEAR).

SLOPE:

The slope is roughly constant with energy (slightly decreasing - LINEAR).

OFF-AXIS = 5.66 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED OFF-AXIS

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:
- tends to decrease when energy increases (LINEAR).

SLOPE:
- The slope is roughly constant with energy (slightly decreasing - LINEAR).

OFF-AXIS = 11.89 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED OFF-AXIS

\[r_c = r_c(E, \dot{\theta}) \]
\[\alpha = \alpha(E, \dot{\theta}) \]

CORE RADIUS:
- Tends to decrease when energy increases (LINEAR).

SLOPE:
- The slope is roughly constant with energy (slightly decreasing - LINEAR).

OFF-AXIS = 0.25 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED OFF-AXIS

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

tends to decrease when energy increases (LINEAR).

SLOPE:

the slope is roughly constant with energy (slightly decreasing - LINEAR).

OFF-AXIS = 1.72 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED OFF-AXIS

\[\rho_c = \rho_c(E, \vartheta) \]
\[\alpha = \alpha(E, \vartheta) \]

CORE RADIUS:

tends to decrease when energy increases \((\text{LINEAR}) \).

SLOPE:

the slope is roughly constant with energy \((\text{slightly decreasing - LINEAR}) \).

OFF-AXIS = 10.42 (arcmin)

At higher off-axis angles few data are available.
FOR FIXED ENERGY

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

is roughly constant
with off-axis angle (LINEAR).

SLOPE:

is roughly constant
with off-axis angle (LINEAR).

At higher off-axis angles few data are available.
At higher energies few data are available.

ENERGY = 1.0 keV

IFC/CNR

Milano, November 7th, 2001
FOR FIXED ENERGY

\[r_c = r_c(E, \theta) \]

\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

is roughly constant

with off-axis angle (LINEAR).

SLOPE:

is roughly constant

with off-axis angle (LINEAR).

At higher off-axis angles few data are available.

At higher energies few data are available.

ENERGY = 3.7 keV
FOR FIXED ENERGY

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

is roughly constant
with off-axis angle (LINEAR).

SLOPE:

is roughly constant
with off-axis angle (LINEAR).

At higher off-axis angles few data are available.
At higher energies few data are available.

ENERGY = 6.5 keV
FOR FIXED ENERGY

\[r_c = r_c(E, \theta) \]

\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

is roughly constant

with off-axis angle (LINEAR).

SLOPE:

is roughly constant

with off-axis angle (LINEAR).

At higher off-axis angles few data are available.

At higher energies few data are available.
FOR FIXED ENERGY

\[r_c = r_c(E, \theta) \]
\[\alpha = \alpha(E, \theta) \]

CORE RADIUS:

- is roughly constant
- with off-axis angle (LINEAR).

SLOPE:

- is roughly constant
- with off-axis angle (LINEAR).

At higher off-axis angles few data are available.
At higher energies few data are available.

ENERGY = 3.7 keV
FOR FIXED ENERGY

\[r_c = r_c(E, \vartheta) \]
\[\alpha = \alpha(E, \vartheta) \]

CORE RADIUS:

is roughly constant

with off-axis angle \((\text{LINEAR})\).

SLOPE:

is roughly constant

with off-axis angle \((\text{LINEAR})\).

At higher off-axis angles few data are available.
At higher energies few data are available.

ENERGY = 6.5 keV
FOR FIXED ENERGY

\[r_c = r_c(E, \hat{\theta}) \]
\[\alpha = \alpha(E, \hat{\theta}) \]

CORE RADIUS:

is roughly constant

with off-axis angle (LINEAR).

SLOPE:

is roughly constant

with off-axis angle (LINEAR).

At higher off-axis angles few data are available.

At higher energies few data are available.

No data for high ENERGIES AND OFF-AXIS ANGLES.

No calibration is possible for these values.

ENERGY = 6.5 keV

IFC/CNR

Milano, November 7th, 2001
2 DIMENSIONAL FIT

\[r_c = a + b \cdot E + c \cdot \theta + d \cdot E \cdot \theta \]

\[\alpha = x + y \cdot E + z \cdot \theta + w \cdot E \cdot \theta \]
PSF in-flight calibration - MOS 1 - MOS 2

King Core Radius for MOS 1

CORE RADIUS OF THE PSF - MOS 1

energy (keV)

off-axis (mm)

energy (keV)
King Slope for MOS 1
2 DIMENSIONAL FIT

\[r_c = a + b \cdot E + c \cdot \theta + d \cdot E \cdot \theta \]

\[\alpha = x + y \cdot E + z \cdot \theta + w \cdot E \cdot \theta \]

<table>
<thead>
<tr>
<th>(r_c)</th>
<th>MOS 1</th>
<th>(\alpha)</th>
<th>MOS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5.074 ± 0.001</td>
<td>(x)</td>
<td>1.472 ± 0.003</td>
</tr>
<tr>
<td>(b)</td>
<td>-0.236 ± 0.001</td>
<td>(y)</td>
<td>-0.010 ± 0.001</td>
</tr>
<tr>
<td>(c)</td>
<td>0.002 ± 0.001</td>
<td>(z)</td>
<td>-0.001 ± 0.002</td>
</tr>
<tr>
<td>(d)</td>
<td>-0.0180 ± 0.0006</td>
<td>(w)</td>
<td>-0.0016 ± 0.0013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(r_c)</th>
<th>MOS 2</th>
<th>(\alpha)</th>
<th>MOS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>4.759 ± 0.018</td>
<td>(x)</td>
<td>1.411 ± 0.001</td>
</tr>
<tr>
<td>(b)</td>
<td>-0.203 ± 0.010</td>
<td>(y)</td>
<td>-0.005 ± 0.001</td>
</tr>
<tr>
<td>(c)</td>
<td>0.014 ± 0.017</td>
<td>(z)</td>
<td>-0.001 ± 0.002</td>
</tr>
<tr>
<td>(d)</td>
<td>-0.0229 ± 0.0133</td>
<td>(w)</td>
<td>-0.0002 ± 0.0011</td>
</tr>
</tbody>
</table>
r_c and α are fixed to the best fit parameters.

The normalization and the background are free parameters.
r_c and α are fixed to the best fit parameters.

The normalization and the background are free parameters.
Range of Application

- **Green**: Calibration here is well sampled and the modelization provides a good description of the PSF.
- **Yellow**: Few scattered data with large errors are available here. The modeled PSF must be used with caution.
- **Red**: No data are available here. No calibration is possible in this region. **DON'T USE THE MODEL FOR THESE VALUES.**
PSF in-flight calibration - MOS 1 - MOS 2

ENCIRCLED ENERGY FRACTION

EEF IS ANALYTICAL

Radii enclosing 50% and 80% of the energy at 1.5 keV, 8 keV, 9 keV for the on-axis PSF.

<table>
<thead>
<tr>
<th>MOS 1</th>
<th>R(50%)</th>
<th>R(80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 keV</td>
<td>8 keV</td>
<td>9 keV</td>
</tr>
<tr>
<td>8.6''</td>
<td>6.7''</td>
<td>6.4''</td>
</tr>
<tr>
<td>24.5''</td>
<td>21.5''</td>
<td>20.9''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOS 2</th>
<th>R(50%)</th>
<th>R(80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 keV</td>
<td>8 keV</td>
<td>9 keV</td>
</tr>
<tr>
<td>9.1''</td>
<td>7.0''</td>
<td>6.6''</td>
</tr>
<tr>
<td>27.7''</td>
<td>23.1''</td>
<td>22.3''</td>
</tr>
</tbody>
</table>

EEF also for piled-up sources.

IFC/CNR
Milano, November 7th, 2001
SUMMARY

• An analytical model for the PSF and the EEF has been provided

• Using a wide set of data, the best fit parameters are provided as functions of the energy and of the off-axis angle.

• A range of application of the model is defined:

 • At high energies and off-axis angles no calibration is possible.

 • The model must be used with caution at intermediate energies/off-axis angles

• Full detailed report available at

 http://www.ifctr.mi.cnr.it/~simona/PSF_inorbitMOS.ps

NEXT PN !