Data:
- GRS1758-258
- Thin filters
- MOS 1 & 2 in Small Window ~ 22 cts/s ~ 6.6 cts/frame
- PN in Large Window ~ 52 cts/s ~ 2.5 cts/frame

Episode 1: June 2001 meeting (Leicester)
- « Spectral and spatial deformations on piled-up sources, “a one case study, of MOS data” »
- Big problems in spectral results as a function of extraction radius

Episode 2: November 2001 meeting (Milano)
- « Checking encircled energy by spectral fitting »
- Big problems solved thanks to new PSF: spectral results independent of extraction radius.
- but strong MOS excess at low and high energy
The problem left in Episode 2

MOS excess at low and high energy

Is this an effect of bad background correction?

EPIC Cal-Ops Meeting / Schloß Ringberg / Apr. 2–5, 2002

Philippe Ferrando, CEA/SAp
Episode 3

Re-analysis of the GRS1758 piled-up source: all problems remain...
Analysis plan:

- take the latest emchain processing: developer SAS end of January
- stick to one exclusion radius: 6 arcsec for MOS
 source region: [6–45] arcsec MOS1, [6–41] arcsec MOS2
- use the latest matrices (q20 here)
- use the CCF corrections for the Encircled Energy
- background: from annulus [8.4–12] arc min (MOS2)

- since background far away from source region: separate the particle background correction (non vignetted, but with spatial dependence) and the diffuse background correction (vignetted).
Problem equations for « double background subtraction »

Source spectrum = Raw spectrum – source region diffuse bkgd
– source region particle bkgd

source region diffuse bkgd = annulus diffuse bkgd corrected for vignetting

• annulus diffuse bkgd = RAW annulus spectrum – annulus particle bkgd
• annulus particle bkgd = “Lumb” background in annulus region \(\times \) NORM

source region particle bkgd = “Lumb background” in source region \(\times \) NORM
Source spectrum and its diffuse and particle parts
Problem is not solved...
Some impact on fits however

Fitting above 0.9 keV, MOS 1 - PL + BB

Power law index: 4.18 ± 0.11 with simple annulus bkgd subtraction
4.25 ± 0.11 with correct treatment

Rise of index as expected (vignetting increase of background substracted)
Conclusion of Episode 3

- Despite very careful background subtraction, MOS excess at high energy remains. Causes can be:
 i) problems with encircled energy?
 ii) problems with mono-pixel fraction (selected here) ?
 iii) residual pile-up effect ?

- MOS excess in the ~ 0.5–0.9 keV range still present. Causes can be ???

- Side result of this analysis:
 The MOS spectrum is steepened when proper vignetting effect is taken into account. Be careful if sources are in a strong diffuse emission environment.