Effective Area Analysis using the Chandra HETGS

Herman L. Marshall
Chandra X-ray Center (MIT)
Chandra Effective Area

Herman Marshall (MIT CXC)

Mallorca Feb. 05
HETGS Effective Area Calibration

- **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — not this talk

- **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

- **HETG Efficiency**
 - MEG/HEG ratio update ready — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

- **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
ACIS BI/FI QE

- New BI QEs improve matters considerably
- FI loss due to CR blooms is included
- At most 3-4% differences in 2-10 keV range
- No problems within HETGS data
ACIS BI/FI QE

- New BI QEs improve matters considerably
- FI loss due to CR blooms is included
- At most 3-4% differences in 2-10 keV range
- No problems within HETGS data
ACIS BI/FI QE

- New BI QEs improve matters considerably
- FI loss due to CR blooms is included
- At most 3-4% differences in 2-10 keV range
- No problems within HETGS data
HETGS Effective Area Calibration

- **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — not this talk

- **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

- **HETG Efficiency**
 - MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

- **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
HETGS and LETGS Pileup

- Edge appears at 2.1 keV due to EA jump
- Rate (R_f) ~ 0.01 ct/frame/col., 5% loss
- Mk 421 (4148): $R_f = 0.05$, giving jump of 19%
LETGS — Pileup

Flux (ph/cm²/s/keV)

Energy (keV)

N_H: $2.1150617e+20$

A_1: 2.0493584

Γ_1: 1.9017482

A_2: 0.53020634

Γ_2: 1.8563525

τ_{C-K}: 2.0767686

τ_{N-K}: -0.016886855

τ_{O-K}: 0.033560230

τ_{F-K}: 0.0073570022

Chandra Effective Area	Herman Marshall (MIT CXC)

Mallorca Feb. 05
HETGS Effective Area Calibration

- **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — see later talk

- **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

- **HETG Efficiency**
 - MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

- **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
Si-K Edge in BI QE

- Appears when using the new BI QE models
- Effect is an inverse, reversed edge
- Jump is about 6%

MEG, 15 sources

Counts (+1)

Wavelength (Å)
Fitting Si-K Edge in HETGS Residuals

- Use 13 blazar observations
- Si-K is near Ir-M
 - Fixing Ir-M edge requires good fit to Si-K
 - Use 2 steps: approx. Si-K to get Ir-M, then use good Ir-M fix to finish Si-K fix adjustment
- Residual has near edge structure — use Si-K opacity from ACIS team
Chandra Effective Area Herman Marshall (MIT CXC) Mallorca Feb. 05
HETGS Residuals after fixing Ir-M edge
Fit to Si-K edge

MEG and HEG fits in Si–K region

$\tau_{\text{Si-K}} = 0.0619 \pm 0.0036$

Residual

Wavelength (Å)

Chandra Effective Area Herman Marshall (MIT CXC) Mallorca Feb. 05
HETGS Effective Area Calibration

- **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — not this talk

- **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

- **HETG Efficiency**
 - MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

- **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
N-K Edge in FI QE

- Found 2 yr ago in PKS 2155-304 data
- Objective was to find N-K in contaminant
- Target was offset to put N-K on Bl chip
- N-K is OK in filter, not in Fl chip
HETGS Effective Area Calibration

• **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — not this talk

• **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

• **HETG Efficiency**
 - MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

• **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
Contamination

- Filter dominates below .2867 keV, contaminant above
- Composition from edges: C:O:F:N ~ 55:5:4:<2
- ECS gives slower deepening than elemental model
HETGS Effective Area Calibration

- **ACIS-S**
 - BI QE vs. FI QE — now down from <15% to <5%
 - Pileup — impact depends on source brightness
 - Si-K edge — 6% edge residual
 - N-K edge in FI chips — more important for LETG/ACIS
 - Contamination — not this talk

- **ACIS OBF**
 - C-K edge energy shift — only important for LETG/ACIS
 - O-K edge — incomplete, depends on contamination

- **HETG Efficiency**
 - MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 - Compare LETG to HETG — incomplete

- **HRMA Effective Area**
 - Ir-M edge — 10% jump at 2.075 keV
HRMA Ir-M fix & HETGS

Chandra Effective Area Herman Marshall (MIT CXC) Mallorca Feb. 05
HEG/MEG Comparison

Fit spans full HEG wavelength range

Damp polynomial here
HETGS Effective Area Calibration

• **ACIS-S**
 • BI QE vs. FI QE — now down from <15% to <5%
 • Pileup — impact depends on source brightness
 • Si-K edge — 6% edge residual
 • N-K edge in FI chips — more important for LETG/ACIS
 • Contamination — not this talk

• **ACIS OBF**
 • C-K edge energy shift — only important for LETG/ACIS
 • O-K edge — incomplete, depends on contamination

• **HETG Efficiency**
 • MEG/HEG ratio to be updated — <7% for E > 0.8 keV
 • Compare LETG to HETG — incomplete

• **HRMA Effective Area**
 • Ir-M edge — 10% jump at 2.075 keV
HRMA Ir-M edge

- Jump is about 10%
- MEG and HEG agree
- See Diab Jerius’ talk
HRMA Overlayer Study

HETGS, 13 Blazars (10/99 through 7/04)

10 Å overlayer

15 Å overlayer

25 Å overlayer

20 Å overlayer

Chandra Effective Area

Herman Marshall (MIT CXC)

Mallorca Feb. 05
HRMA Overlayer: \(20 \pm 5 \) Å
(Updated Optical Constants)

- 20 Å overlayer is best now
- Si-K edge was updated, no residual observed
- Offset of 5% due to poor fit to PL models
Fit Results

Chandra Effective Area

Herman Marshall (MIT CXC) Mallorca Feb. 05
Fit Results

Chandra Effective Area

Herman Marshall (MIT CXC) Mallorca Feb. 05
Fit Results

$\ln(\text{Flux, ph/cm}^2\text{s/keV})$ vs $\ln(E, \text{keV})$

$A: 0.021147127$

$\Gamma: 1.6652503$
MEG-HEG Consistency

- Fit PL models to MEG and HEG independently
- Fit parameters show slight calibration biases
HETGS of 1H1426+42

1H1426+428 (HETGS, new EA) MEG

Gamma = 1.9582410
N_H = 1.36000e+20

Chandra Effective Area
Herman Marshall (MIT CXC)
Mallorca Feb. 05
HETGS of 1H1426+42

1H1426+428 (HETGS, new EA) HEG

Chandra Effective Area

Herman Marshall (MIT CXC)

Mallorca Feb. 05
Summary

• Most spectral edges and narrow features are fixed (or fixable)

• HRMA and ACIS EA require 2 more adjustments
 • Si-K edge
 • Ir-M edge

• MEG fix relative to HEG is still not right
 • Smoother spectra are possible
 • Cross-calibration with XMM will help