First attempt to derive deadtime of EPIC-pn from FIFO reset counters

Michael Martin

E. Kendziorra, T. Schanz, A. Santangelo

26.10.2006
Overview

- Introduction
- Data readout chain
- Test setup
- Measurements
- First results
- Summary and outlook
Introduction to FIFO resets

FIFO reset leads to loss of data
- In orbit:
 - possible explanation: maximum ionizing particle leads to saturation of on-chip amplifier stage
- On ground:
 - Effect was seen by illumination with radioactive Am-source (5 MeV Alpha)
- Complete column is above lower energy threshold
- FIFO in readout chain is filled with events from row additionally to normal events
- FIFO overflow can occur, causing reset
- How many frames are lost due to the reset?

Working plan:
- Look for correlation between Ax_Pmode counter and number of lost frames
- Correction factor on time for each mode (FF, eFF, SW, LW, Timing)
- Estimate dead time → correct effective time on source
Data readout chain

EPIC-pn event data input

- Event word 1
- Event word 2
- Time word 1
- Time word 2

FIFO (1024 x 16 bit)
max. 511 events
& time word

FIFO reset
Reset FIFO
FIFO full

CPU & electronics

FIFO reset to prevent data corruption

Time word is needed to trigger CPU processing

EPIC Cal Meeting 26-27.10.2006
Test Setup I

@ IAAT
lab-model of EPIC-pn
flight level hard and
software revisions

BUT
operating just one CCD

force FIFO overflow
by illuminating pn-CCD
with LED pulse
Comparison between frame times (FT) in flight and at IAAT

(FT are given in ms)

<table>
<thead>
<tr>
<th>Mode</th>
<th>EPIC-pn FT</th>
<th>IAAT-pn FT</th>
<th>ΔT/FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>73.4</td>
<td>72.0</td>
<td>-1.4%</td>
</tr>
<tr>
<td>eFF</td>
<td>199.2</td>
<td>170.0</td>
<td>-15%</td>
</tr>
<tr>
<td>LW</td>
<td>47.7</td>
<td>43.0</td>
<td>-10%</td>
</tr>
<tr>
<td>SW</td>
<td>5.7</td>
<td>5.7</td>
<td>0%</td>
</tr>
<tr>
<td>TM</td>
<td>6.0</td>
<td>6.0</td>
<td>0%</td>
</tr>
<tr>
<td>BU</td>
<td>Not yet tested</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPIC-pn deadtime from FiFo Resets

M. Martin

Institut für Astronomie und Astrophysik
Recording of the FiFo status

Click here for trigger menu
Measurements

LED pulsed with Agilent AWG
Square pulse with external trigger

Amplitude: 2-6V
Period: 1 sec
Pulse width: 0.5-1msec
of pulses: 100

1. HK-files processed with IDL-progamme (@go)
2. Extract time words and search for irregularities
3. Check if found # of time gaps equals # of pulses
4. Get the time difference of gaps
5. Compute # of lost frames
6. Get conversion factor from Ax_Pmode counter
First Results

<table>
<thead>
<tr>
<th>Mode</th>
<th># FIFO Resets (Ax_Pmode)</th>
<th>Missing Frames</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FullFrame</td>
<td>613</td>
<td>613</td>
<td>1</td>
</tr>
<tr>
<td>eFullFrame</td>
<td>600</td>
<td>613</td>
<td>1.0217</td>
</tr>
<tr>
<td>Large Win</td>
<td>582</td>
<td>602</td>
<td>1.0344</td>
</tr>
<tr>
<td>Small Win</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Timing</td>
<td>634</td>
<td>1241</td>
<td>1.9574</td>
</tr>
</tbody>
</table>

Dead time = # FIFO Resets * CF * frame time
Summary and Outlook

• First attempt to estimate dead time looks promising
• Larger data sets are needed
• Investigate strange behavior of Small Window mode
• Test with EPIC-pn flight spare model at MPE PANTER facility needed for verification