Calibration activities at ESAC

M.G.F. Kirsch
M. Ehle, R. Saxton, M. Stuhlinger, M.J. Smith, A. Martin Carrillo, G. Winroth

European Space Agency
• NRCO’s & EOR’s

• MOS column dependent CTI verification

• pn Burst mode calibration

• pn time jump detection

• automation of pn relative and absolute timing monitoring

• MOS timing mode calibration

• XMM-Chandra Cross Calibration

• calibration preview tool and diagnostic tools
NRCO’s and EOR’s

• NRCO:
 - #64: EPIC soft flux discrepancies
 50 ks **NGC 7172** scheduled for 24.04.2007
 - #67: MOS off-axis-1: redistribution off axis and QE check @ low energies
 40 ks **RXJ1856.6-3754**
 - #68: MOS off-axis-2 redistribution off axis and QE check @ high energies
 60 ks **REJ2248-511**
 - #69: pn quadboxtemp Draft

• EOR:
 - #1: MOS 3x3 mode QE and pattern
 50 ks **Vela PWN** during RGS routine CAL
MOS column dependent CTI and gain update

- 26 new CTI CCFs + SW
 --> brings some individually strange columns in agreement with the rest

- 26 new gain/CTI CCFs
 --> refinement of epochs
 --> energy cal within +/-5 eV
• investigate flux stability
• develop timing monitoring analog to pn

--> project will start after summer
pn Burst mode correction

- Correction developed from low rate Cas-A observation is still ok for medium Crab rate sources, but introduces strong residuals for very bright sources.
- Rate dependent CTI in pn is not correct.
- Similar features seen in timing mode.
- Need to inform user and improve rate dependent correction.
old_CCF_old_tol

<table>
<thead>
<tr>
<th>Revolution</th>
<th>FF</th>
<th>Eff</th>
<th>SW</th>
<th>LW</th>
<th>T</th>
<th>B</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-200</td>
<td>193</td>
<td>3328</td>
<td>5.80</td>
<td>205</td>
<td>986</td>
<td>20.79</td>
<td>149</td>
</tr>
<tr>
<td>200-400</td>
<td>149</td>
<td>401</td>
<td>37</td>
<td>36</td>
<td>762</td>
<td>1.31</td>
<td>3</td>
</tr>
<tr>
<td>400-600</td>
<td>290</td>
<td>743</td>
<td>35</td>
<td>10</td>
<td>10</td>
<td>0.69</td>
<td>10</td>
</tr>
<tr>
<td>600-800</td>
<td>37</td>
<td>70</td>
<td>37</td>
<td>4</td>
<td>308</td>
<td>12.5</td>
<td>1</td>
</tr>
<tr>
<td>800-1000</td>
<td>20</td>
<td>67</td>
<td>20</td>
<td>1</td>
<td>70</td>
<td>3.4</td>
<td>1</td>
</tr>
<tr>
<td>1000-1200</td>
<td>4</td>
<td>64</td>
<td>5</td>
<td>1</td>
<td>70</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>1200-1400</td>
<td>285</td>
<td>5652</td>
<td>5.04</td>
<td>285</td>
<td>5652</td>
<td>5.04</td>
<td>285</td>
</tr>
</tbody>
</table>

Sum: 15.62%

new_CCF_new_tol

<table>
<thead>
<tr>
<th>Revolution</th>
<th>FF</th>
<th>eFF</th>
<th>SW</th>
<th>LW</th>
<th>Timing</th>
<th>Burst</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-200</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>200-400</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>400-600</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>600-800</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>800-1000</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>1000-1200</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>1200-1400</td>
<td>193</td>
<td>967</td>
<td>51</td>
<td>10</td>
<td>54</td>
<td>13</td>
<td>149</td>
</tr>
</tbody>
</table>

Sum: 3.27%

old CCF

<table>
<thead>
<tr>
<th>FF</th>
<th>eFF</th>
<th>SW</th>
<th>LW</th>
<th>Timing</th>
<th>Burst</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>20.7</td>
<td>37</td>
<td>39</td>
<td>12</td>
<td>6</td>
<td>15.6</td>
</tr>
</tbody>
</table>

new CCF

<table>
<thead>
<tr>
<th>FF</th>
<th>eFF</th>
<th>SW</th>
<th>LW</th>
<th>Timing</th>
<th>Burst</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>20</td>
<td>12</td>
<td>1</td>
<td>1.7</td>
<td>6</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Comparison

- **FF**
 - Old CCF: 5.8 %
 - New CCF: 0.7 %
 - New CCF tol=20: 3.4 %

- **eFF**
 - Old CCF: 20.8 %
 - New CCF: 20 %
 - New CCF tol=20: 3.6 %

- **SW**
 - Old CCF: 37.2 %
 - New CCF: 12.5 %
 - New CCF tol=20: 6.4 %

- **LW**
 - Old CCF: 39.0 %
 - New CCF: 1.3 %
 - New CCF tol=20: 1.3 %

- **Timing**
 - Old CCF: 12.0 %
 - New CCF: 1.7 %
 - New CCF tol=20: 1.3 %

- **Burst**
 - Old CCF: 52.9 %
 - New CCF: 6.0 %
 - New CCF tol=20: 2.9 %

- **All**
 - Old CCF: 15.6 %
 - New CCF: 5.0 %
 - New CCF tol=20: 3.3 %

-->further refinement of tol parameter needed
Relative and absolute timing are monitored with automated scripts.

Results are available and updated on a regular basis on the internal EPIC pages.

Still some issues with refined ground station overheads regarding absolute timing to be verified.
• Chandra data analysis is now integrated in the cross calibration archive (see talk about preview tool)

• analysis by M. Smith at XCCT
check of various proposals for calibration changes:

- NEW pn XRT3 calibration
- various MOS new QE files (SI, SiO₂, Si +H₂O+X)