Calibration Activities – the MOS perspective

Changing the MOS Quantum Efficiency Calibration:

Motivation and Justification.

Flux comparison using a sample (17) of AGN observations: as presented at MPE (May 2006)

Band (keV)	(MOS1-PN)/PN	(MOS2-PN)/PN
0.54-0.85	-5.4%	-1.6%
0.85-1.50	+2.4%	+4.1%
1.50-4.0	+6.8%	+7.3%
4.0-10.0	+11.4%	+7.4%

MOS v PN effective area discrepancy: 3C 273 comparison

Investigating additional transmission layers

3C273 REV 0096 MOS1

3C273 REV 0096 MOS1

3C273 REV 0096 MOS1

3C273 REV 0096 MOS1

Constraint on Si edge also precludes strong "Si" absorber

XMM EPIC MOS

Comparison with Orsay

CCD1 MOS1

CCD1 MOS2

Comparison with Orsay

XMM EPIC MOS

 $\chi^2 = 1.11$ (with global renormalisation, c.f. 1.19 before without)

Palermo 12/04/2007

Steve Sembay (sfs5@star.le.ac.uk)

XMM

EPIC

MOS

MOS1 v RGS model, 1ES0102 – Rev 0065

MOS1 v RGS model, 1ES0102 - Rev 0981

 $N_{\rm H} = 5.36 \times 10^{20} \rm cm^{-2}$

 $N_{\rm H} = 8.00 \times 10^{20} {\rm cm}^{-2}$

Zoom showing resolution adjustment required for later Revs

Comparison with Zeta Puppis – On-axis Point Source

Independent astrophysical evidence ? Spectral fitting to relatively high column density BL Lac MS0737 REV 0063 MOS1 Black (ge16) Red (ge17) **TBABS** * **PO** Wilms abund normalized counts/sec/keV 0.15-5.0 keV 0 MOS1 $\chi^2 = 1.13 \rightarrow 1.06$ $N_{\rm H} \sim 4.4 \times 10^{20} {\rm cm}^{-2}$ n MOS2 sign(d-m) $^{*}\chi^{2}$ 0 ĥ $\chi^2 = 1.16 \rightarrow 1.08$ -10 0.2 0.5 2 channel energy (keV)

Problem with the psf? – See talk by Andy later

3c 273: Flux Comparison, 7.5"-40" v 15"-40" extraction radii

Problem with the psf? – See talk by Andy later

MCG-6-30-15: 0", 7.5", 11.25", 15" inner extraction radii, 40" outer

XMM EPIC MOS

Band (keV)	(MOS1-PN)/PN	(MOS2-PN)/PN
0.54-0.85	-5.4%	-1.6%
0.85-1.50	+2.4%	+4.1%
1.50-4.0	+6.8%	+7.3%
4.0-10.0	+11.4%	+7.4%

Transmission functions for the various regions (dimensions in microns):

 $\begin{array}{rcl} T_1 &=& \exp(-0.1\,\mu_{\rm SO_2}) \\ T_2 &=& T_1\,\exp(-0.1\,\mu_{\rm SO_3})\,\exp(-0.4\,\mu_{\rm SO_3}) \\ T_3 &=& T_2\,\exp(-0.25\,\mu_{\rm SI})\,\exp(-0.3\,\mu_{\rm SO_3}) \\ T_4 &=& T_3\,\exp(-0.25\,\mu_{\rm SI})\,\exp(-0.4\,\mu_{\rm SO_3}) \end{array}$

XMM EPIC MOS

Top View

SEM Pictures

Side View

(MOS1-PN)/PN

(MOS2-PN)/PN

Summary:

Shape of the MOS/PN discrepancy suggests problem lies with the quantum efficiency

Adjustment of the MOS QE would be consistent with Orsay measurements and probable uncertainties in model

Adjusting the QE would leave a residual normalisation offset of about 5-7% between MOS and PN

Would need to increase MOS global effective area or decrease PN global effective area to achieve absolute consistency

MOS low energy rmf would need re-calibration for consistency with any change in the QE

Comparison of high energy portion of the spectra from 795 and 903