Assessment of spectral quality in EPIC Fast Modes

Matteo Guainazzi
European Space Astronomy Center (ESAC-ESA)
Villaframca del Castillo

Maria Diaz-Trigo (ESAC-ESA), Frank Haberl (MPE), Marcus Kirsch (ESOC-ESA)
Outline

• EPIC-pn rate-dependent CTI
 • Status
 • Future work

• Assessment of spectral quality in:
 • EPIC-pn Timing Mode
 • EPIC-pn Burst Mode
 • EPIC-MOS Timing Mode

• User’s perspective
Rate-dependent CTI (RDCTI) status

- **Released on December 2, 2008**

- **Outline of the method currently used:**
 - Define sample of non-variable sources
 - 42 Timing, 36 Burst
 - Extract one spectrum for each of the 4 columns surrounding the boresight
 - Gain fit the spectrum in the 1.5-3 keV with a \(\text{wabs}^* (\text{po} + \text{bb}) \) model \(\Rightarrow G_{corr} \)
 - Calculate for each spectrum the number of shifted electrons, \(N_e \)
 - Fit the \(G_{corr} = a_0 N_e a_1 + a_2 \Rightarrow a_i \) go into the CCF
RDCTI results

Rate dependent CTI - pn timing mode

- 1-σ confidence interval
- Fit: \(y = a_0(x^{a_1}) + a_2 \)
 - \(a_0 = 0.9933 \)
 - \(a_1 = 0.0029 \)
 - \(a_2 = -0.0068 \)

Rate-dependent CTI - pn burst mode

- 1-σ confidence interval
- Fit: \(y = a_0(x^{a_1}) + a_2 \)
 - \(a_0 = 0.047 \)
 - \(a_1 = 0.121 \)
 - \(a_2 = 0.854 \)

SASv8.0-based calibration

Special Burst gain correction reverted to ground-based values
Spectral quality assessment method

- Quality of the residuals in the 1.5-3 keV energy band
- Comparison between measured and expected (laboratory/astrophysics) narrow-band spectral features
- Testbed sample:
 - 48 observations in Burst Mode (21 on the Crab)
 - 142 observations in Timing Mode
Residuals in the 1.5-3 keV band

Overall satisfactory, but the correction fails miserably in a few cases.
Energy reconstruction accuracy (Timing)

Circled measures correspond to N132D and CasA

Energy shifts - pn Timing Mode - CCF#20

$(E_{pn} - E_{laboratory}) / E_{laboratory}$

- Absorption lines
- Emission lines

(Symbol size proportional to count rate)
CCF#19: $E=6.93 \pm 0.02$ keV

CCF#20: $E=6.982 \pm 0.017$ keV

Nominal: 6.969-6.983 keV
MOS Timing Mode: method

- Comparison between the centroid energy measured in CasA and N132D between:
 - MOS Timing and pn Full Frame exposures
 - MOS Timing and imaging Modes

- Comparison (via gain fit) between RGS (phenomenological) model and MOS2 Timing Mode spectrum of Au Microscopii
CasA and N132D spectra
Line spectral accuracy

MOS1 versus pn

\[\text{100}\% \left(\frac{E_{\text{model}} - E_{\text{pn}}}{E_{\text{pn}}} \right) \]

\begin{align*}
\text{pn Energies (E_{\text{pn}} \text{ keV})} & \\
\text{N132D} & \text{CasA}
\end{align*}

MOS2 versus pn

\[\text{100}\% \left(\frac{E_{\text{model}} - E_{\text{pn}}}{E_{\text{pn}}} \right) \]

\begin{align*}
\text{pn Energies (E_{\text{pn}} \text{ keV})} & \\
10 \text{ eV} & 30 \text{ eV}
\end{align*}

MOS1 Imaging versus Timing Modes

\[\text{100}\% \left(\frac{E_{\text{model}} - E_{\text{pn}}}{E_{\text{imaging}}} \right) \]

\begin{align*}
\text{1 Imaging Mode Energies (E_{\text{imaging}} \text{ keV})} &
\end{align*}

MOS2 Imaging versus Timing Modes

\[\text{100}\% \left(\frac{E_{\text{model}} - E_{\text{pn}}}{E_{\text{imaging}}} \right) \]

\begin{align*}
\text{1 Imaging Mode Energies (E_{\text{imaging}} \text{ keV})} &
\end{align*}
Au Mic MOS2 vs. RGS

gain fit offset: 18.8±0.4 eV
MOS2/RGS relative normalization: 97.9±0.5 %
Following an explicit recommendation of the User’s Group, two Technical Notes have being prepared – to be made public before the next User’s Group Meeting.

XMM-Newton SOC Technical Note

XMM-SOC-CAL-TN-0082

Accuracy of energy reconstruction in EPIC-MOS Timing Mode

M. Guainazzi

March 21, 2009

History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Editor</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>October 1, 2008</td>
<td>M. Guainazzi</td>
<td>First draft</td>
</tr>
<tr>
<td>0.2</td>
<td>March 21, 2009</td>
<td>M. Guainazzi</td>
<td>First review by the SOC and the EPIC-MOS IT</td>
</tr>
</tbody>
</table>

XMM-Newton Calibration Technical Note

XMM-SOC-CAL-TN-083

Evaluation of the spectral calibration accuracy in EPIC-pn Fast Modes

Matteo Guainazzi (ESA-ESAC, Villafranca del Castillo, Spain), Marcus Kirsch (ESA-ESOC, Darmstadt, Germany), Frank Haberl (MPE, Garching, Germany) et al. *(other institutes)*

March 21, 2009

History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Editor</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10 March 2009</td>
<td>M. Guainazzi</td>
<td>First draft</td>
</tr>
<tr>
<td>0.2</td>
<td>March 21, 2009</td>
<td>M. Guainazzi</td>
<td>First review by the SOC and the EPIC-pn IT</td>
</tr>
</tbody>
</table>
Conclusions

- Numbers for the EPIC Calibration Status Document on the energy reconstruction accuracy:
 - EPIC-MOS: $\lesssim 20$ eV
 - Are we happy with this level?
 - EPIC-pn Timing: $\lesssim 20$ eV ($E<2$ keV), $\lesssim 50$ eV ($E\approx 6$ keV)
 - See later for a possible strategy to improve
 - EPIC-pn Burst: good agreement in the only case where this measurement has been possible so far
 - More archival observations? NRCO?
Further work on EPIC-pn

- Re-calibration after the Timing PSF arfgen fix
- Expansion of the objects sample used for the calibration of the RDCTI
 - Time-dependent effects?
- Recalibration of the pn pattern fraction in Fast Modes
- Inclusion of a linear term in the RDCTI gain correction
- Observation-based RDCTI
Zoom on the RDCTI

Rate dependent CTI - pn timing mode

fit: $y = a_0(x^{a_1}) + a_2$

$a_0 = 0.9933$

$a_1 = 0.0029$

$a_2 = -0.0068$