

XRT PSF Investigations

Michael Smith, ESAC EPIC Cal Ops Meeting, MPE, 27-28 April 2017

European Space Agency

Issues with Annular Spectra

PKS 2155-304

- Piled-up
- Annular extraction regions for EPIC

Sample of non-piled-up on-axis sources

Issues with Annular Spectra

Systematics in the current PSF modelling for all 3 XRTs

Hopefully can be improved by tuning the PSF model parameters

Systematics in the current PSF modelling for all 3 XRTs

Hopefully can be improved by tuning the PSF model parameters

Current ELLBETA implementation: 240 parameters per XRT

- 5 PSF model parameters (r₀, α, ε, FWHM, norm)
- 8 energies (0.10, 1.50, 2.75, 4.25, 6.00, 8.00, 10.25, 15.00 keV)
- 6 off-axis angles (0', 3', ..., 15')

Systematics in the current PSF modelling for all 3 XRTs

Hopefully can be improved by tuning the PSF model parameters

Current ELLBETA implementation: 240 parameters per XRT

- 5 PSF model parameters (r₀, α, ε, FWHM, norm)
- 8 energies (0.10, 1.50, 2.75, 4.25, 6.00, 8.00, 10.25, 15.00 keV)
- 6 off-axis angles (0', 3', ..., 15')

Limit the problem to 14 parameters per XRT

- 2 PSF model parameters (r₀, a)
- 7 energies (15.00 keV \equiv 10.25 keV)
- 1 off-axis angle (0' for MOS1, 1.2' for MOS2 and PN)

Iterative scheme for the empirical correction of XRT XPSF parameters

Per source:

- Extract spectrum from circular region
- Extract spectra from several annular regions
- Create respective RMFs
- Create respective ARFs
- Fit model to circular region spectrum
- Apply this reference model to the annular spectra
- For all annular spectra and all sources, determine a suitable statistic, e.g.:

$$\sum_{i} (d_i - m_i)^2 / e_i$$

Modify ELLBETA parameters in order to minimise the statistic

Iterative scheme for the empirical correction of XRT XPSF parameters

Per source:

- Extract spectrum from circular region
- Extract spectra from several annular regions
- Create respective RMFs
- Create respective ARFs
- Fit model to circular region spectrum
- Apply this reference model to the annular spectra
- For all annular spectra and all sources, determine a suitable statistic, e.g.:

$$\sum_{i} (d_i - m_i)^2 / e_i$$

Modify ELLBETA parameters in order to minimise the statistic

Source sample consists of 11 observations of bright non-piled-up point sources located at the nominal aim point:

		PN	MOS1	MOS2
MS0205.7+3509	0084140101	FF	FF	FF
Holmberg IX	0112521001	FF	FF	FF
Markarian 6	0144230101	FF	FF	FF
PKS B1334-127	0147670201	FF	FF	FF
RX J0228-40	0200480101	FF	FF	FF
LBQS 1228+1116	0306630201	FF	FF	FF
NGC 5506	0554170101	SW		
NGC 5506	0554170201	SW		
RBS 1055	0555020201	FF	FF	FF
MCG-5-23-16	0727960101	SW		
MCG-5-23-16	0727960201	SW		

5-6 nested annuli being compared (up to 60" outer radius)

2 PSF model parameters (r0 and a) being varied

Change in Overall Statistic

Change in Chi2 from public to candidate CCFs

XRT PSF Investigations | Michael Smith | EPIC Cal Ops Meeting, MPE | 27-28 April 2017 | Pag. 10

European Space Agency

Change in Overall Statistic

Change in Chi2 from public to candidate CCFs

XRT PSF Investigations | Michael Smith | EPIC Cal Ops Meeting, MPE | 27-28 April 2017 | Pag. 11

Change in Overall Statistic

Change in Chi2 from public to candidate CCFs

XRT PSF Investigations | Michael Smith | EPIC Cal Ops Meeting, MPE | 27-28 April 2017 | Pag. 12

European Space Agency

Comparison of EEFs

Results: Mkn 6 (PN)

Results: Mkn 6 (PN)

XRT PSF Investigations | Michael Smith | EPIC Cal Ops Meeting, MPE | 27-28 April 2017 | Pag. 15

European Space Agency

Results: NGC 5506 (PN)

Results: MCG-5-23-18 (PN)

Results: Holmberg IX (MOS1)

Results: PKS B1334-127 (MOS2)

0.8763 / 133

0.8763 / 133

5633

20

5

XRT PSF Investigations | Michael Smith | EPIC Cal Ops Meeting, MPE | 27-28 April 2017 | Pag. 19

European Space Agency

10

Results: Blazar Sample

Public XRTn CCFs

Candidate XRTn CCFs

Further Validation

Further validation:

- Confirm no drastic change in overall spectra
- Check > 10 keV
- Confirm no impact on source detection

XRT PSF Investigations

