Analytic modelling of the PN particle background spectrum

Chen Wang (Speaker)

Jean Ballet

AIM, CEA-Saclay, France

2022.04.27

Outline

- Introduction
- Previous work
 - Decomposition into patterns

Analytic models for spectrum of each pattern (single, horizontal-pixel events and vertical-pixel events)

The emission lines, *Lorentz* model instead of *Gaussian* model.

• Global model for (pattern=0) and (pattern [0:4]). (Not divided into patterns.)

Adapt to different locations of the detector.

CCD

RawY

Random regions

• Model for Users (Pattern=0 and Pattern [0:4])

Free and fixed parameters

Lines

Comparison with Richard Sturm's model

Accuracy

Stability

Background handling in spectral fitting

- Most critical for extended sources
- Science: extract spectra in source, background regions and FWC in the source region, fit together
- Best to **fit common model with linked parameters** (naturally accounts for statistical fluctuations in the background spectrum)
- Background is astrophysical + lines + **particle background**

The RMF file we used for the continuum part of the spectrum is diagonal matrix.

- PN particle background more difficult (no large out-of-FOV area)
- Objective: find analytic model from Filter-Wheel Closed spectra
- Starting point is M. Freyberg's work

Previous work about pattern=0 spectra

Richard Sturm:

M(E)

Model for single-pixel events:

1, spline*exp + powerlaw

2, Two smedge:

1

$$\exp\left[-f(E/E_c)^{\alpha}\right]\left[1-\exp((E_c-E)/W)\right] \quad E \ge E_c$$

 $E < E_c$

3, Gaussian lines

Only the diago RMF for the continuum part and the lines.

Our model :

For the continuum part (diago RMF)

Powerlaw for the soft energy band (start at 0.2 keV)

Broken powerlaw

Small features

Smedge ~ 0.5 keV Step ~ 1.5 keV

For the emission lines

Lorentz with the instrumental RMF

The emission lines

.

.

- Correlation with the continuum part.
- The small lines between 4 7 keV are in scientific important band and too faint to be fitted individually by the user.

About the model:

- Central energies are linked together based on the theoretical value
- Normalization ratios are fixed within the same elements
- Lorentz model improves the fit !

How to deal with the width :

For the lines of the same element, the widths were linked. Eventually, most widths were fixed (Based on the fit results over the full data).

Element	$K_{\alpha 1}$	$K_{\alpha 2}$	$K_{\beta 1}$	$L_{\alpha 1} / L_{\alpha 2}$			
In the unit of eV							
Cu (referrence)	8,047.78	$8,\!027.83$	8,905.29				
Al	$1,\!486.70$	$1,\!486.27$					
Ti	$4,\!510.84$	$4,\!504.86$					
Cr	$5,\!414.72$	$5,\!405.509$	$5,\!946.71$				
Fe	$6,\!403.84$	$6,\!390.84$	$7,\!057.98$				
Ni	$7,\!478.15$	$7,\!460.89$	$8,\!264.66$				
Zn	$8,\!638.86$	$8,\!615.78$	9,572.0				
Au				9,713.3/9,628.0			

Table : Fluorescence lines included in the FWC spectral model.

The analytic models for each pattern of double pixel events

A κ-velocity distribution.

A broken power law (pattern=1) **or** a *double* broken power law model (pattern=3).

Lorentz for each fluorescence line.

For horizontal-nixel events	-velocity distribution:		
	C E'^2		
A κ-velocity distribution	$C \frac{1}{(1+E'^2/(\kappa-3/2))^{\kappa+1}}$		
A broken power-law model.	$E' = (E - E_0)/\Delta E$		
A linear model (Maximum(1-A*E	, <i>O</i>)) . Nicholls et al. (2012, Ap. 752, 148)		
Lorentz for each fluorescence lin	e.		

Summed up model for Spectra of Pattern<=4

- Summed up models with the frozen parameters.
- Lorentz for each line.

The residuals are within 5 sigma.

The problem with the added-up model

Normally the user's selection is either (pattern=0) or (pattern<=4)

•The original idea was to fit only the normalization of each component.

However, when testing the model with different selections

The model with fixed shape parameters is not flexible enough regarding the *spectral variation* with position (CCD dependence, RAWY dependence).

Leaving all the shape parameters free would not be stable on the summedup spectra.

Additionally, some difference between the patterns vanish (especially > 0.5 keV) or become less significant after adding up the patterns. It is not necessary to divide the spectra into patterns.

Therefore, a global model with free shape parameters

RAWY > 150, horizontal pixel events (pattern=2 || pattern=4)

A global model for summed up spectra (pattern in [0:4])

Fixed parameters

- Power law (start at 0.2 keV)
- A κ-velocity distribution.
- A broken power law model.
- Notch model

Gamma

Κ

- The second Gamma, break energy
- LineE, width

And, Lorentz for each fluorescence line.

CCD 5 (Pattern<=4)

Free parameters

- ; Norm
- ; E0, delta-E, Norm
- First-Gamma, Norm
- Norm

7 free parameters

The problem with the new model

Problem with the kappa law model : RawY dependence

Soft energy band, 0.2-0.5 keV. (even with totally free kappa velocity model).

RawY > 150 Pattern<=4

The modified Kappa-law model for summed up spectra

Modified kappa-law model :

$$M \times C \frac{E'^2}{(1 + E'^2/(\kappa - 3/2))^{\kappa + 1}}$$
$$M = \left[1 + \left(\frac{E'}{B}\right)^{10}\right]^{0.4}$$

$$E' = (E - E_0)/\Delta E$$

Modified kappa-law model

RawY > 150 Pattern <=4

The model for summed up (pattern<=4) spectra

	Fixed parameters	F
Power law (start at 0.2 keV)	Gamma	;
A modified ĸ-velocity distribution.	к, В	;
A broken power law model.	Break energy, Second-Gamma	,
Notch model	LineE. width	:

$$M \times C \frac{E'^2}{(1 + E'^2/(\kappa - 3/2))^{\kappa + 1}}$$
$$M = \left[1 + \left(\frac{E'}{B}\right)^{10}\right]^{0.4}$$

 $E' = (E - E_0) / \Delta E$

7 free parameters

Lorentz for each fluorescence line.

Global shift : Energy of each line linked $(\sim 8.0 \, keV)$

Same element: Link the norm of the line elements.

Free parameters:

•

Energy of the reference line Width of reference line Cu (~8.0 keV) and Al line (~1.5 keV) Each element with only one free norm

11 free parameters

Model for pattern=0 spectra

•		Fixed parameters	Fre	ee parameters
•	Power law (start at 0.2 keV)	Gamma	;	Norm
•	A broken power law model.	Break energy, Second-Gamma	;	First-Gamma, Norm
•	Notch model	LineE, width	;	Norm
•	Smedge	All	;	None

4 free parameters

Lorentz for each fluorescence line.

Global shift : Energy of each line linked to reference line $Cu \sim 8.0 \text{ keV}$

Same element: Link the width and norm of the lines of the same elements.

Free parameters:

Energy of the reference line Width of reference line Cu (~ 8.0 keV) and Al line (~1.5 keV) Each element with only one free norm

11 free parameters

circle

about 100

exposure; pattern=0

Comparison with Richard Sturm's model (Pattern<=4)

- The stability (Fewer free parameters, more stable).
- The accuracy (The soft energy band is better fitted).

14

Comparison with Richard Sturm's model (Pattern=0)

Conclusion

- Global models for summed up (pattern <=4) spectra and single pixel events spectra (pattern=0) which can adapt to different locations in the detector.
- The accuracy and stability is generally better than the currently used (Richard Sturm's) model
- Lorentz model for lines works better than Gaussian.