

EPIC OPS-CAL meeting

Dr. Marcus G. F. Kirsch

April 2022

European Space Agency (ESA) European Space Operations Centre (ESOC)

ESA UNCLASSIFIED - For ESA Official Use Only

Post - COVID ?

→ THE EUROPEAN SPACE AGENCY

Commanding from ESOC

OPS Preparation and monitoring from ESOC

Or similar from homeoffice

- XMM was operated since mid March 2020 under COVID conditions
 - Practically only SPACONs were at ESOC
 - Engineers/Analysts were allowed to be on-site for special activities
 - ESA infrastructure helped with new ways to access the different LANs securely from home
- "post COVID" working environment is now different from before COVID:
 - SPACONs are on site

•

- Provision of equipment for home office
- more flexible home/office schemes
- on site overall workplace structure may change
- Engineer on call service at or close to ESOC

mission performance indicators - no change

→ THE EUROPEAN SPACE AGENCY

•Requirements:

Ground Segment availability: > 85 %

Data Recovery: > 95 %

Science Operations Efficiency: > 70 %

 indicators are well above the requirements
 throughout the mission life time

No COVID effects

spacecraft sub systems are all healthy

→ THE EUROPEAN SPACE AGENCY

•weight: 3.8 t, length: 10 m

- •Attitude and Orbit Control System (AOCS)
- 4 Reaction wheels, 4 IMUs (gyros), 2 star trackers, + ...
- Redundant reaction control system using hydrazine thrusters

•Power + Thermal: 2 solar panels with 16 metre span, 2 batteries, various active heaters •On Board Data Handling (OBDH)

•Radio Frequency system (RF): 2 Low Gain antennae plus redundant transponders

• Payload: 3 Wolter telescopes with 58 mirrors each, 3 cameras 2 gratings, active temperature control of mirrors and instruments

	Money	Funded until	End 2020/2022						
	Fuel	remaining Use per year Mileage	~36.2 Kg < 2.5 kg/year 2032+						
	Thruster pulses	Remaining use per year Mileage	400 (200000 qualified) <4 500 2022 (B-system with full redundancy available, industry recommends to stay on A)						
語味はい	Solar array power	Maximum required Current margin	~ 1350 W ~ 400 W						
1	Battery	According to industry	15+ у						
	Gyros/(IMUs)	Usage	< 34 %						
	Reaction wheels	Usage	< 60 %						
	Optocouplers	Mileage	~ 2028 +						
	RF switches Transponder switches	Usage	Stuck at one position Back up not used instead transponders are switched TX A LCL switches <2100 TX B LCL switches <2100 (Qualified to 25000)						

[+]

Status of S/C 2021: healthy

fuel estimates 2021 give life time > 2032

Reaction wheels are the primary actuators for attitude control. Thrusters are only used for wheel unloading.

Changed in 2013 the onboard attitude control software to use **4 reaction wheels instead of 3** before (use the back up wheel) called 4 wheel drive (4WD)

the degree of freedom that is introduced by this change, allows to **reduce the fuel consumption and to change wheel speeds without changing the S/C total momentum** (null space operation).

This reduced the fuel consumption by more than a factor of 2

fuel (migration – status)

- Migration A performed 2017 (Tank1 colder)
- Migration B performed 2019 (higher temperature delta → more efficient migration)
- 1st Replenishment performed successfully 2020 June (moving fuel from AUX tanks to Main tank including gas transfer by temperature excursions)
- Next one 16-20 May 2022

÷

→ THE EUROPEAN SPACE AGENCY

ground stations

•	Working horses:	
	Santiago and Kourou	J

- Alternatives: New Norcia, Villafranca, ٠ Maspalomas, Yatharagga, Canberra
- Potential apogee gap as of 2028 •
- Additional station from new external ٠ provider to diversify.
 - Contract negotiations finished. New comms network equipment •
 - and frequency and timing system to be installed Operational readiness expected by Q3
 - •

Station	STATUS OF FREQUENCY LICENCE	PROVIDER								
Kourou (French Guiana)	No expiration	ESA								
Santiago (Chile)	up to the service provider	SSC								
Villafranca & MSP (Spain)	up to the service provider	INTA								
New Norcia (Australia)	Expires and is extended at the end of every year	ESA								
Yatharagga (Australia)	up to the service provider	SSC								
Canberra (Australia)	up to the service provider	NASA NASA ESA agreement no-cost								
Tolhuin (Argentina)	up to the service provider	KSAT								

¥ 🕂 🕇

· 🛶 🔶

_

0

Figure 2-2: Tolhuin, antenna to the left is the 13.5 meter for XMM

→ THE EUROPEAN SPACE AGENCY

space craft disposal – not possible

- XMM has not enough fuel to perform a disposal (known since many MEORs)
- long term debris issue calculation has been performed (XMM-EOL-MEM-00203-OPS-GR)
 - over the next 200 years XMM-Newton will spend approximately half the time on an orbit which crosses the GEO protected zone.
 - actual time spent within the protected zone is in the order of one month per century
 - no manoeuvre strategies available which could avoid GEO crossings
 - large manoeuvres (10 m/s (~15 kg of fuel)) have been found to change the GEO zone dwell time by only about 10 %

automation history – make OPS more robust and efficient

automation 2.0 – news on the horizon

future automation activities will focus on:

- automated simulator training scenarios for SOE and SPACONS
- further automation of ground stations and on board antennae handover
- further instrument end to end automation (re. radiation switch off and on again)
- near realtime data analysis (new webserver infrastructure currently build up)
- **inclusion of AI** into nominal operations (temperature/current prediction for special OPS (i.e. eclipse, or special pointing), decision support tools for routine and anomaly activities)

· eesa

MOC system evolution - scheduled and started

esa

- Mission Control System Migration:
 Maintain Solaris baseline (10) with control domain only on Solaris 11
 →No Application porting required (configuration only)
- High commonality with INTEGRAL, MEX. Initial prototyping with MEX MCS gave promising results
- \rightarrow Effort expected to be less than previous migration(s)
- Operational D/B review and re-organization ongoing
- automation platform MOIS migration to new operating system on virtual machines
- MUST archive migration to ARES

•

- for reason's of obsolescence the **radiation monitoring system Lela needs migration** from it's out-of-date Windows baseline. This upgrade will also address a better integration of the system with the existing Solaris 10 MCS baseline.
- new webserver infrastructure including near-realtime system

💳 🔜 📕 🚝 💳 🚍 📕 🏣 🔚 💶 📕 🔲 📲 🚟 💳 🛶 🗿 🖕 📕 🗮 💳 🔂 ன ன ன ன ன ன ன ன ன

roadmap MOC - available

lssic	System	2020	Q4 2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	MCS-main-HW	Oracle T4			Oracle S7/2												
1	MCS-main-OS	Solaris-10			Solaris-10/11											end of ExLiTi	
	MCS-main-SW	S2K 3.1			S2K 3.1												
	MCS-sub-HW	VM															
	MCS-sub-OS	SLES-11				SLES15											
	MCS-sub-SW	SCOS 5				SCOS 6											
	MCS-Archive (LTA) NETAPP															
	Vis. Layer HW																
	Vis. Layer US	-		CCD undate													
	GETS-HW	Oracle T4		3GD update	MMaas												
	GETS-OS	Solaris-10			SLES15												
	GETS-SW	GETS 2.2.12			GETS 3.1.6												
	NIS-HW	VM			0110 0.1.0	VM or MMaa	157										
	NIS-OS	SLES11				SLES12/15											
	NIS-SW	EGOS-NIS 4.2.2				EGOS-NIS 5											
	GMMS-HW	PC				PC upgrade						PC upgrade ?					
-	GMMS-OS	Windows Server				Windows ?						Windows up	iate?				
	GMMS-SW	COTS				upgrade COT	s?					COTS update	?				
	MPS-HW	included in MCS															
	MPS-OS	as MCS															
	MPS-SW	as MCS															
	ODB-HW	included in LELA	VM (multi user)	VM (multi user)												
	ODB-OS	Windows 7	Windows 19	SLES15													
	OBD-SW	MS Access	MS Access	DABYS													
			Potential														
h	Lela-HW	PC	backup for ODB	include in MCS													
	Lela-OS	Windows 7		Solaris-10													
	Lela-SW	Lela Matlab 12.1		N.A													
	MOIS-HW	PC (shard INT/CL	U)	VM							???? Meetin	g with Franco	is				
	MOIS-OS	Windows 2008	-	Windows 2019													
	MOIS-SW	MOIS-6			MOIS-7												
1	MUST-HW	PC		disccontinued													
1	MUST-OS	Windows		disccontinued													
1	MUST-SW	MUST		disccontinued													
	ARES-HW			MMaaS													
	ARES-OS			MMaaS													
	ARES-SW			MMaaS													
	OBSM-HW	SUN-SPARC	Oracle T4			Oracle S7/2											
			Solaris 2.5														
			compatibility														
			mode in Solaris														
			8 container														
	OBSM-OS	Solaris 2.5	under Solaris 10			Solaris10+6											
	OBSM-SW	Ada Compiler	Ada Compiler			Ada Compile	r										
1	SIM-HW	VM						VM (optional)								
	SIM-OS	SLES11						SLES15 (optio	onal)								
	SIM-SW	SIMSAT4.3.5						SIMULUS(opt	ional)								
	FOP-HW	PC/VM	check if can be g	o to VM only													
	FOP-OS	Windows															
	FOP-SW	MS Access															
	Webserver-HW	VM		VM													
1	Webserver-OS	Linux		Linux													
	Wohron CW	nhn		wordpress + phy	ton												

family of mission operations and knowledge management established

OOLs

Analysi - DATA Import

Paramete

0015

Integral

Analyst - DATA Import

MATIS

Analyst - REALS Export

OOLs

Super OOLs

GAIA

TC

Failures

•

4/7 live operations: SPACONS + engineer full on call service from MOC (S/C and instrument) shared SOEs for XMM/INT

> New simulations and training plan (ESA-XMM-TRG-PL-0001) New SPACON training plan (ESA-XMM-INT-OPS-MAN-0001)

Systems training review and videos/audio presentation for individual subsystem available can be used for individual re-training or new commers)

Joint Analyst service team building up Joint SPACON team will include Euclid soon

D/B consolidation between missions using Dabys Improved X-references in place (merged 6 into 1), and working on online version ala Gaia

→ long term knowledge transfer needs to be fostered and continuously performed

24/7 On call S/C and INSTRUMENTS

Euclid introduction into control room and new equipment **•**eesa

Potetial Next Generation Control Rooms

• INTEGRAL

• performs after the failure of its Reaction Control System (RCS) a so called Z-flip momentum control, where it rotates about sun line over momentum planning period to control solar radiation pressure

\rightarrow 0 fuel consumption

 mission planning and observation strategy needed changes but is not significantly affecting the observation efficiency (<5%)

XMM did initial study with industry \rightarrow Results:

• XMM Z-flip strategy like INTEGRAL appears a **feasible** way to have very long periods (perhaps indefinitely long) without RCS operation (to save fuel for later/safe modes, or in case of a future problem with RCS)

constraints: mission planning S/W and Flight dynamics
 S/W updates

into plane + Z + Y out of plane T₂ To Spacecraft total angular momentum vector (Ĥ)

Z-flip theory (D Salt)

test could be performed soon

→ THE EUROPEAN SPACE AGENCY

XMM-MOC - getting ready for one more decade

- XMM-Newton S/C is in very good shape
- fuel limits life time to > 2032 .

- ground systems are being made ready and state of the art to serve for one more decade
- automation plays a key role in future operations to increase safety and efficiency
- stability of the ground segment systems is a key ingredient for successful automation
- proficient team and knowledge management are key factors

