XMM-Newton on axis EPIC-pn PSF

Ivan Valtchanov, XMM EPIC CAL meeting 22-23 May 2023

Background information

Figure 4: 2keV Enclosed Flux

- Using a list of 16 AGNs from Lumb report, all in PN Large Window mode
- Process the OBS_IDs in a homogenuous way
 - Calibrated event lists from PPS via NXSA
 - Clean for periods of high background using the PPS derived thresholds
 - Filter events for PATTERN in [0:4] && FLAG == 0 && GTI && PI > 150
 - Generate images in [400,1400] eV and in [1500,2500] eV in detector coordinates with 2"/pixel: in counts and count-rates (using the exposure maps)
 - Detect and mask sources (using ewavelet) excluding the central region (not to mask the actual source)
 Treating "cheese" mask
- Using the count-rate image in DETXY and the "cheese mask": build radial profile with linear + log grid
 - Centroid of source is used as origin (center-of-mass for centroid)
 - Linear scale out to 20 pixels (40") and then in log space out to 10'
- Same processing on "blank" sky PN LW observations (for background)

Method

- We have 16 AGN radial profiles + a background profile on the same radial grid
- We fit simultaneously all 16 profiles,
 - keeping the core radius (\mathbf{r}_c) and slope $(\boldsymbol{\beta})$ to be the same for each source.
 - Model is **Moffat1d()** aka King-profile, beta-profile or ELLBETA in SAS.
 - The amplitude and the background are kept free and *different* for each dataset.
 - Initial r_c and β :
 - **Test1:** allowed to vary within ~10% of the ELLBETA CCF parameters.
 - **Test2:** keep them free with initial values those from ELLBETA CCF
 - Least-square minimization of (data-model)/data_error

Radial profiles in log-log space

<mark>[400,1400] eV</mark>

Data as blue dots + error bars (small)

Best **simultaneous** fit: in green

Normalized background: orange dashed

Best-fit background: grey

Radial profiles in log-log space

[1500,2500] eV

Data as blue dots + error bars (small)

Best simultaneous fit: in green

Normalized background: orange dashed

Best-fit background: grey

Best fit Parameters

- Input ELLBETA parameters from XRT3_XPSF_0018.CCF
 - Energy = 1500 eV, θ=0, **r**_c=**5.61**", β =**1.59**
 - Best-fit results:

	R _{core} (")	β
Case [0.4,1.4] keV	5.77 ± 0.04	1.52 ± 0.01
Case [1.5,2.5] keV	5.77 ± 0.04	1.51 ± 0.01

Encircled Energy Fraction

At 1 keV [0.4,1.4] keV band

Calculated analytically with the CCF or best-fit parameters

+ David Lumb derived EEF

All normalized with EEF(300") = 1

Example: For R=31" →

EEF(CCF) = 0.88

EEF(this work) = 0.84

Encircled Energy Fraction

Results

- Simultanouse fit for radial profiles of 16 point-like sources in PN Large Window mode:
 - Only r_c and β are kept the same for each of the 16 profiles, amplitude and flat background are free
 - The derived PSF parameters are consistent for [0.4,1.4] and [1.5,2.5] keV
 - The derived PSF parameters are slightly off from the CCF ELLBETA parameters
 - The derived $r_c\,$ is 0.17" larger than the value in the CCF
 - The derived β is 0.07 smaller than the value in the CCF
- → The EEF curve with the best-fit r_c and β is different from ELLBETA-derived EEF and from David Lumb-derived EEF (recast from radial profile)
 - \rightarrow EEF(31") = 0.88 in CCF , 0.84 with this method.
 - \rightarrow EEF(61") = 0.95 in CCF, 0.93 with this method.

Future work

- Apply the same method for higher energies
- Increase the sample with more PN LW observations of on-axis point-like sources (if necessary)
- Proceed with off-axis observations?
- Do MOS PSF with the same idea?

The end

How good is the simultaneous fit?

Data/Model in log-lin space

[400,1400] eV case

Data/Model in log-lin space

[1500,2500] eV case

Fraction of masked area

 $0 \rightarrow$ no masked area within radial region 0.5 \rightarrow half of the area is masked

Fraction of masked area

 $0 \rightarrow$ no masked area within radial region 0.5 \rightarrow half of the area is masked

Extreme case: spurious sources masked in the wings of the central source

Synthetic PSF image No gaps or masked areas