XMM-Newton on axis EPIC-pn PSF

Ivan Valthanov:MM EPIC CAL meetins

Background information

Figure 3: Radial Brightness of PSF at 2 keV

- TN by David Lumb (Dec 2022)
- PN in LW mode
- Sample of 16 AGNs on axis
- Compare with CCF

2keV PSF Enclosed Flux

${ }^{\circ}$ 프․ Workflow

- Using a list of 16 AGNs from Lumb report, all in PN Large Window mode
- Process the OBS_IDs in a homogenuous way
- Calibrated event lists from PPS via NXSA
- Clean for periods of high background using the PPS derived thresholds
- Filter events for PATTERN in [0:4] \& \& FLAG == 0 \& \& GTI \& \& PI > 150
- Generate images in $[400,1400]$ eV and in $[1500,2500]$ eV in detector coordinates with 2 "/pixel: in counts and count-rates (using the exposure maps)
- Detect and mask sources (using ewavelet) excluding the central region (not to mask the actual source) \rightarrow creating "cheese" mask
- Using the count-rate image in DETXY and the "cheese mask": build radial profile with linear + log grid
- Centroid of source is used as origin (center-of-mass for centroid)
- Linear scale out to 20 pixels ($40^{\prime \prime}$) and then in log space out to 10^{\prime}
- Same processing on "blank" sky PN LW observations (for background)

Method

- We have 16 AGN radial profiles + a background profile on the same radial grid
- We fit simultaneously all 16 profiles,
keeping the core radius (\mathbf{r}_{c}) and slope $(\boldsymbol{\beta})$ to be the same for each source.
- Model is Moffat1d() aka King-profile, beta-profile or ELLBETA in SAS.
- The amplitude and the background are kept free and different for each dataset.
- Initial r_{c} and $\boldsymbol{\beta}$:
- Test1: allowed to vary within $\sim 10 \%$ of the ELLBETA CCF parameters.
- Test2: keep them free with initial values those from ELLBETA CCF
- Least-square minimization of (data-model)/data_error

Radial profiles in log-log space

$[400,1400] \mathrm{eV}$
Data as blue dots + error bars (small)
Best simultaneous fit: in green
Normalized background: orange dashed
Best-fit background: grey

Radial profiles in log-log space

$[1500,2500] \mathrm{eV}$
Data as blue dots + error bars (small)
Best simultaneous fit: in green
Normalized background: orange dashed
Best-fit background: grey

Best fit Parameters

- Input ELLBETA parameters from XRT3_XPSF_0018.CCF
- Energy = $1500 \mathrm{eV}, \theta=0, \mathrm{r}_{\mathrm{c}}=\mathbf{5 . 6 1}$ ", $\boldsymbol{\beta}=\mathbf{1 . 5 9}$
- Best-fit results:

	$R_{\text {core }}$ (") $^{\prime}$	β
Case $[\mathbf{0 . 4 , 1 . 4}] \mathbf{~ k e V}$	5.77 ± 0.04	1.52 ± 0.01
Case $[\mathbf{1 . 5 , 2 . 5}] \mathbf{~ k e V}$	5.77 ± 0.04	1.51 ± 0.01

Encircled Energy Fraction

At 1 keV [0.4,1.4] keV band

Calculated analytically with the CCF or best-fit parameters

+ David Lumb derived EEF
All normalized with $\operatorname{EEF}(300 ")=1$

Example:

 For $\mathrm{R}=31$ " $\rightarrow$$E E F(C C F)=0.88$
EEF(this work) $=0.84$

Encircled Energy Fraction

WARNING!

Deriving the EEF from the empirical radial profile (i.e. recast) is affected by
pixelisation!
The EEF is overestimated out
to R~20"

Results

- Simultanouse fit for radial profiles of 16 point-like sources in PN Large Window mode:
- Only r_{c} and $\boldsymbol{\beta}$ are kept the same for each of the 16 profiles, amplitude and flat background are free
- The derived PSF parameters are consistent for [0.4,1.4] and [1.5,2.5] keV
- The derived PSF parameters are slightly off from the CCF ELLBETA parameters
- The derived r_{c} is $0.17^{\prime \prime}$ larger than the value in the CCF
- The derived β is 0.07 smaller than the value in the CCF
\rightarrow The EEF curve with the best-fit r_{c} and β is different from ELLBETA-derived EEF and from David Lumb-derived EEF (recast from radial profile)
$\rightarrow \operatorname{EEF}\left(31^{\prime \prime}\right)=0.88$ in CCF , 0.84 with this method.
$\rightarrow \operatorname{EEF}\left(61^{\prime \prime}\right)=0.95$ in CCF, 0.93 with this method.

Future work

- Apply the same method for higher energies
- Increase the sample with more PN LW observations of on-axis point-like sources (if necessary)
- Proceed with off-axis observations?
- Do MOS PSF with the same idea?

The end

How good is the simultaneous fit?

Data/Model in log-lin space
[400, 1400] eV case

Data/Model in log-lin space
$[1500,2500]$ eV case

Data/Model in log-lin space
[400, 1400] eV case
Characteristic bump at ~ 100 "?

Fraction of masked area

$0 \rightarrow$ no masked area within radial region
$0.5 \rightarrow$ half of the area is masked

Fraction of masked area

$0 \rightarrow$ no masked area within radial region
$0.5 \rightarrow$ half of the area is masked

Extreme case: spurious sources masked in the wings of the central source

Synthetic PSF image
No gaps or masked areas

