

# **MOS contamination and redistribution**

Simon Rosen, ESAC

EPIC Cal meeting 22/23 May 2023

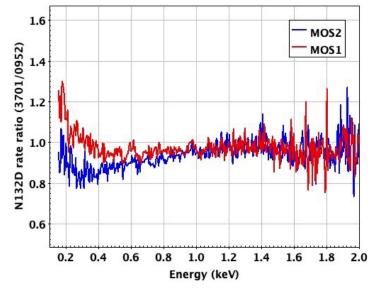
ESA UNCLASSIFIED - For Official Use

#### 



#### **Overview**

- Reminder of what was done previously
- Update of the contamination (mentioned last year)
- Update of the redistribution matrices
- Residual issues




## **Reminder of previous work and approach**

- MOS RMF evolution previously determined/provided for each MOS
  - Patterns 0 and  $\leq$  12 (all)
  - Patch-core (r=14"), patch-wings (14"<r<36") and out-of-patch (r > 36")
  - 14 separate epochs (last in use since Sep. 2011)
- Changes in redistribution and contamination can produce energydependent effects that are similar
- For MOS, previous work
  - Assumed/adopted (RGS) Carbon-based contaminant
  - Assumed contamination uniform across field (incl. patch)
  - Derived contamination first, from off-patch region
  - Derived RMF for patch regions with updated contamination model

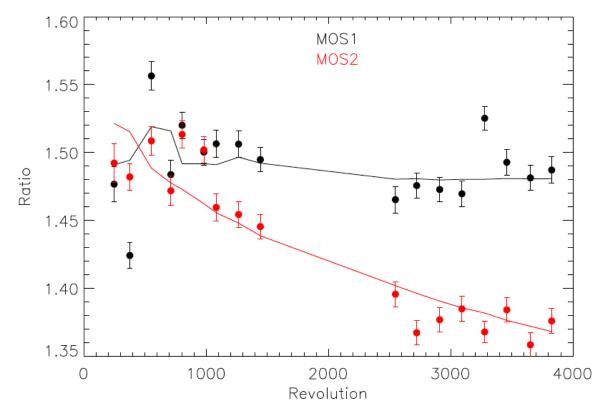
## **Reminder of previous work and approach**

- Work by J Kajava hinted at Oxygen being a better explanation of contaminant in one obs of 1E0102-72.
- Not needed in RXJ1856 data. Mixed signals from N132D



N132D [rev3701 / rev0952] identical extraction aperture/posn.

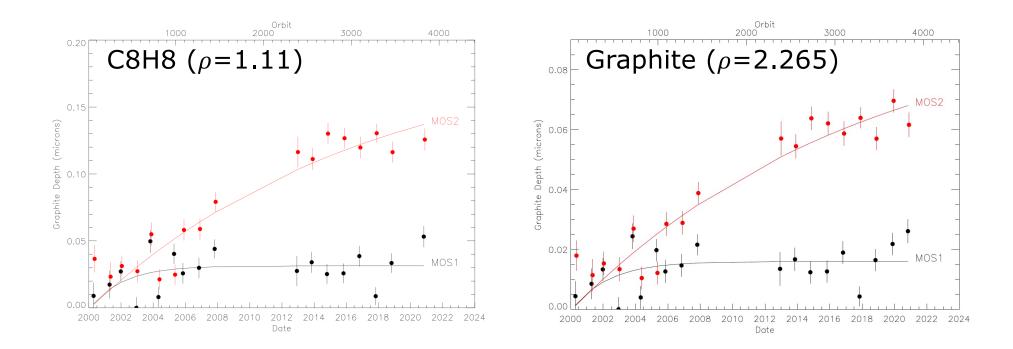
Excessive ratio at E < 0.30 keV in MOS1.


Minimum of profile near 0.5 keV for MOS1, and ~0.3 keV for MOS2. !!

Opted to assume Carbon-based absorber for consistency with earlier approach ... but further investigation of a possible Oxygen component should be pursued.

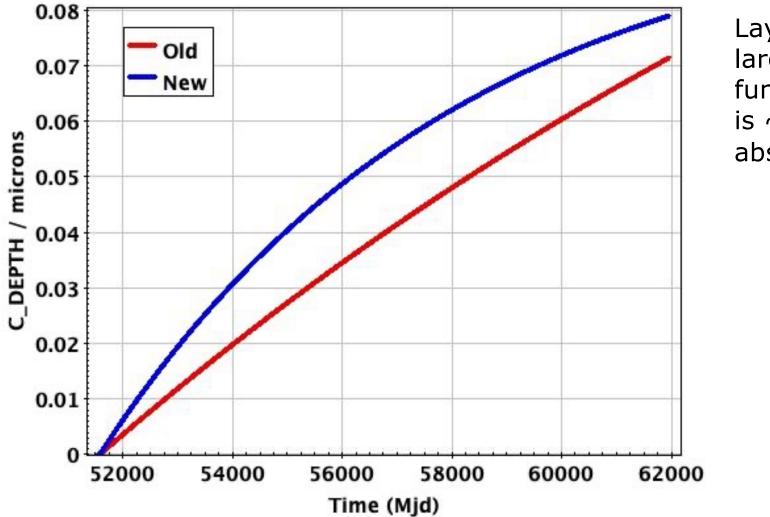


#### Contamination


- C edge not distinguishable in spectra due to RMF effects
- Use off-patch observations of 1E 0102-72.3
- Use ratio of counts in 0.1-0.75 and 0.98-3.0 keV bands.
- Systematic trials of different thicknesses of Carbon-based absorber to match observed ratio for each observation.






#### Contamination

Modelled as pure graphite or C8H8 – lower density requires larger layer thickness

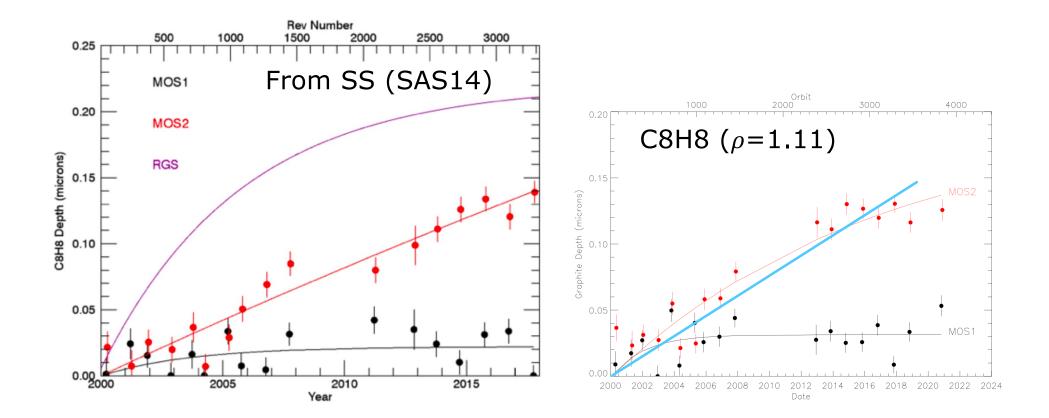




## **Contamination (Old CCF v New CCF)**



Layer depth larger than old function. Impact is ~5% on absorption.

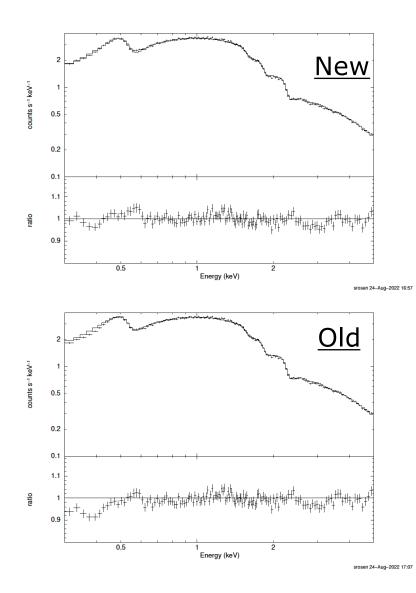

ESA UNCLASSIFIED - For Official Use

#### The set of th

#### Contamination



Unpublished update from S. Sembay showed better agreement with latest analysis. Related to density values adopted.




ESA UNCLASSIFIED - For Official Use

 $\bullet$ 



#### Contamination



MOS2 spectrum of 3C273 (rev 3768).

Model is double power-law that best fits pn data

Using new contamination model improves match for MOS2 at E< 0.5 keV

RXJ1856-3754 and 4XMM J111857.7+580323, also yield improved fits but negligible difference seen in CORRAREA sample (120 sources).

Use of new function important to reflect flattening of the growth of the contaminant layer.



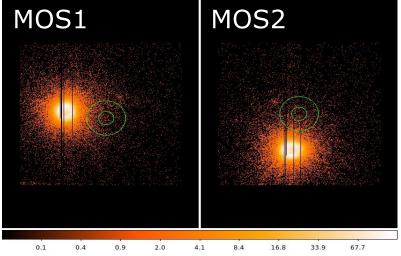
### Redistribution

| Source          | Model input (IACHEC)                                   |
|-----------------|--------------------------------------------------------|
| 1E 0102-72.3    | rgspn_mod_tbabs_tbvarabs_2apec_line_ratios_jd_v1.9.xcm |
| RX J1856.5-3754 | burwitz.xcm (2-component BB model)                     |
| Zeta Pup        | puppis_model.qdp                                       |

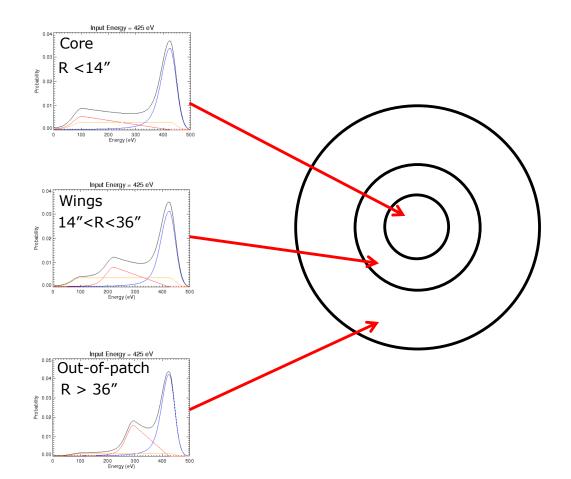
| Epoch | Rev range | dates                   |
|-------|-----------|-------------------------|
| 15    | 2451-2750 | 2013-04-27 - 2014-12-16 |
| 16    | 2751-3050 | 2014-12-16 - 2016-08-05 |
| 17    | 3051-3350 | 2016-08-05 - 2018-03-26 |
| 18    | 3351-3650 | 2018-03-26 - 2019-11-14 |
| 19    | 3651-3950 | 2019-11-14 - current    |






#### Redistribution

| Revolution | Epoch | Obsid      | Source              | Location |
|------------|-------|------------|---------------------|----------|
| 2521       | 15    | 0727760101 | RX J1856.5-3754     | р        |
| 2706       | 15    | 0727760301 | RX J1856.5-3754     | р        |
| 2722       | 15    | 0412982301 | 1E 0102-72.3        | р        |
| 2533       | 15    | 0561380601 | Zeta Pup            | р        |
| 2618       | 15    | 0727760201 | RX J1856.5-3754     | о        |
| 2722       | 15    | 0412982201 | 1E 0102-72.3        | о        |
| 2540       | 15    | 0159361501 | Zeta Pup            | о        |
| 2909       | 16    | 0412982501 | 1E 0102-72.3        | р        |
| 2817       | 16    | 0561380701 | Zeta Pup            | р        |
| 2989       | 16    | 0561380901 | Zeta Pup            | р        |
| 2910       | 16    | 0412982401 | $1 \ge 0102 - 72.3$ | о        |
| 2794       | 16    | 0727760401 | RX J1856.5-3754     | о        |
| 2977       | 16    | 0727760601 | RX J1856.5-3754     | 0        |
| 2911       | 16    | 0561380801 | Zeta Pup            | о        |
| 3111       | 17    | 0412983301 | 1E 0102-72.3        | р        |
| 3279       | 17    | 0412983501 | 1E 0102-72.3        | p        |
| 3075       | 17    | 0727761001 | RX J1856.5-3754     | p        |
| 3172       | 17    | 0561381001 | Zeta Pup            | p        |
| 3092       | 17    | 0412983201 | 1E 0102-72.3        | 0        |
| 3278       | 17    | 0412983401 | 1E 0102-72.3        | 0        |
| 3162       | 17    | 0727761101 | RX J1856.5-3754     | о        |
| 3276       | 17    | 0561381201 | Zeta Pup            | о        |
| 3459       | 18    | 0810880201 | 1E 0102-72.3        | р        |
| 3645       | 18    | 0810880501 | 1E 0102-72.3        | p        |
| 3454       | 18    | 0810840101 | RX J1856.5-3754     | p        |
| 3622       | 18    | 0810841401 | RX J1856.5-3754     | p        |
| 3361       | 18    | 0561381101 | Zeta Pup            | p        |
| 3543       | 18    | 0810870101 | Zeta Pup            | p        |
| 3646       | 18    | 0810870201 | Zeta Pup            | p        |
| 3459       | 18    | 0810880101 | 1E 0102-72.3        | 0        |
| 3358       | 18    | 0727761301 | RX J1856.5-3754     | 0        |
| 3542       | 18    | 0810840201 | RX J1856.5-3754     | о        |
| 3826       | 19    | 0810880701 | 1E 0102-72.3        | р        |
| 3804       | 19    | 0810841601 | RX J1856.5-3754     | p        |
| 3727       | 19    | 0810871301 | Zeta Pup            | p        |
| 3911       | 19    | 0810871401 | Zeta Pup            | p        |
| 3652       | 19    | 0810880301 | 1E 0102-72.3        | 0        |
| 3826       | 19    | 0810880601 | 1E 0102-72.3        | 0        |
| 3903       | 19    | 0810841701 | RX J1856.5-3754     | 0        |


# 0412982301 MOS1 Josephine Constraints of the second second

0.2 0.5 1.2 2.6 5.4 11.0 22.1 44.5 88.7

#### 0412982201







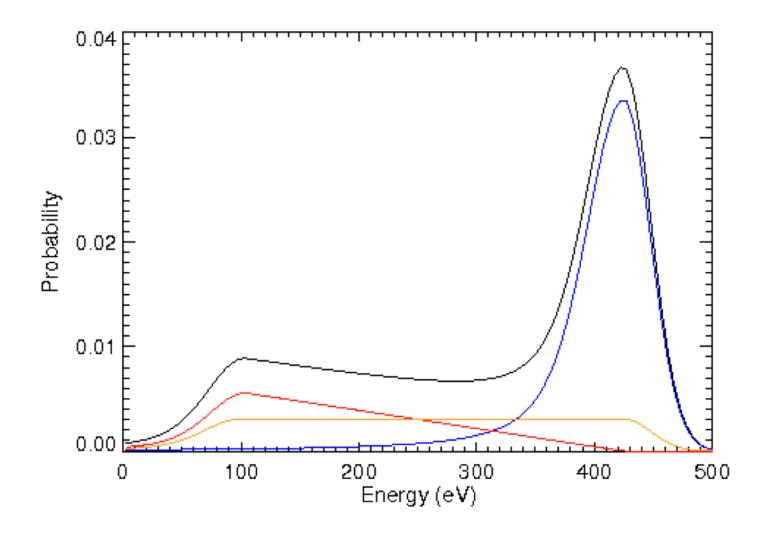
RMF created by *rmfgen* for a source on the patch

Weighted combination of core, wings and off-patch RMFs (area weighting if 'extended', PSF weighting if 'pointlike')

ESA UNCLASSIFIED - For Official Use

#### \_ II ⊾ ## ₩ HI **=** ½ \_ II II \_ \_ # ₩ ⊾ **0** II \_ # # ₩ ₩ ₩ |•|

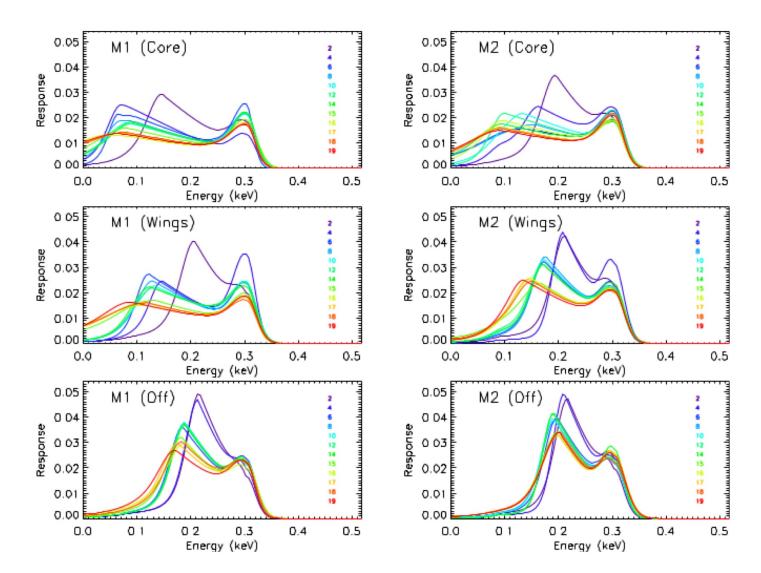
European Space Agency




## Redistribution

- Observed on patch (core and wings) and off-patch
- IACHEC source spectrum models adopted for consistency with previous analysis – maybe not optimum
- Columns showing hints of > 20eV gain shifts excluded (conservatively excluded columns from previous analyses too)
- ARFs include new contamination model
- Process iteratively modifies parameters of empirical redistribution function to optimize fit of data to IACHEC models (simultaneously for all spectra in the epoch (separately for each MOS, each patch region)
- Cal-closed data not used (lose constraints from Mn K $\alpha$ , $\beta$  in 5.8-6.5 keV)
- Potential residual gain shifts not fitted encountered problems in many cases – would not expect a substantial impact – effect diluted by unshfited spectra in the epoch block.



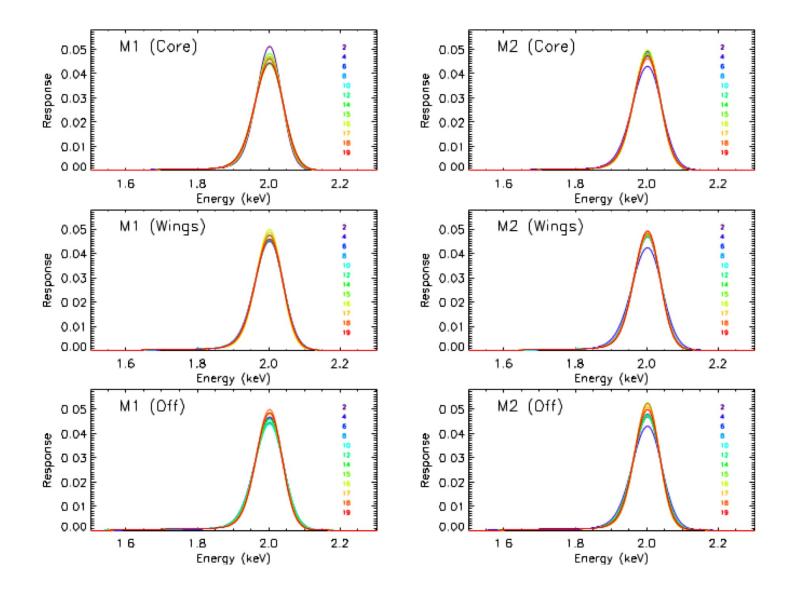

### **Empirical redistribution profile**



ESA UNCLASSIFIED - For Official Use

#### 

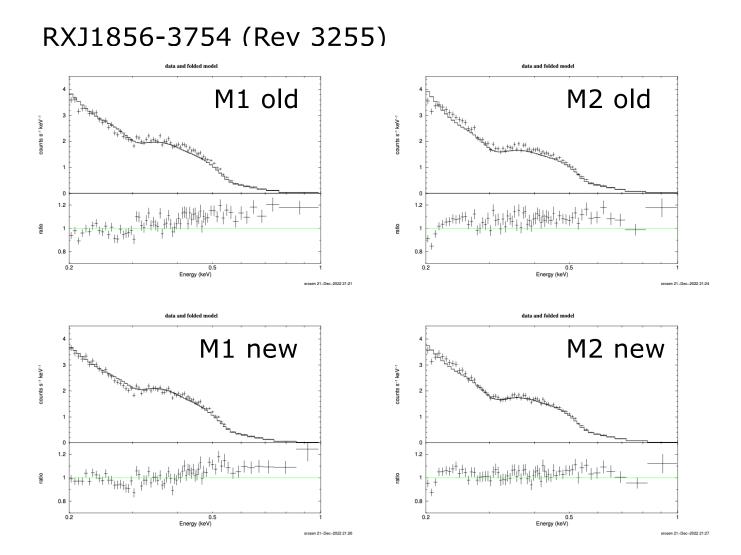
# Redistribution evolution for 0.3keV photons




Evolution appears broadly systematic

Indications of 'update' quantisation.

ESA UNCLASSIFIED - For Official Use


# Redistribution evolution for 2.0keV photons

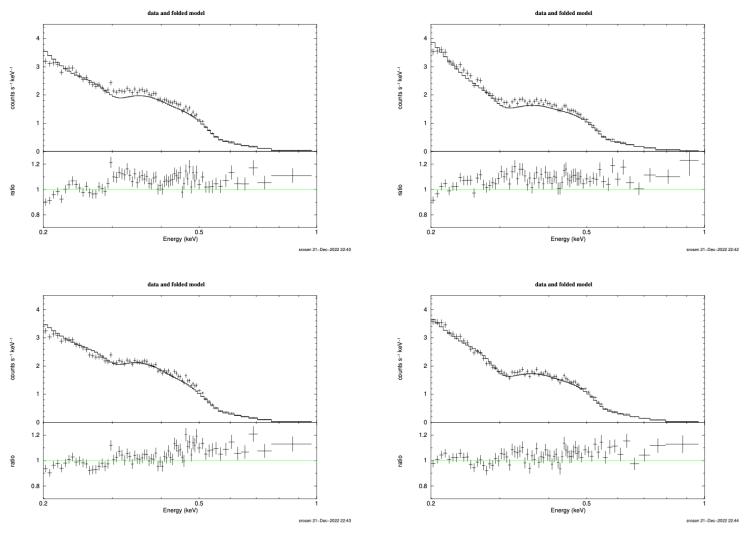


ESA UNCLASSIFIED - For Official Use

16 European Space Agency






ESA UNCLASSIFIED - For Official Use

#### 





#### RXJ1856-3754 (Rev 4000)

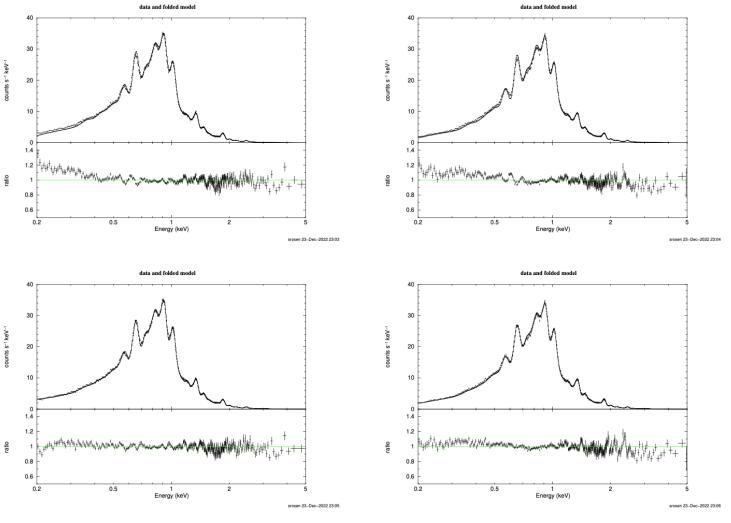



ESA UNCLASSIFIED - For Official Use

= 88 🛌 ## 88 🗯 🚝 🚝 = 88 88 == 2 ## 🛶 🚳 88 == 1# 💥 🛀 🔤

18 European Space Agency

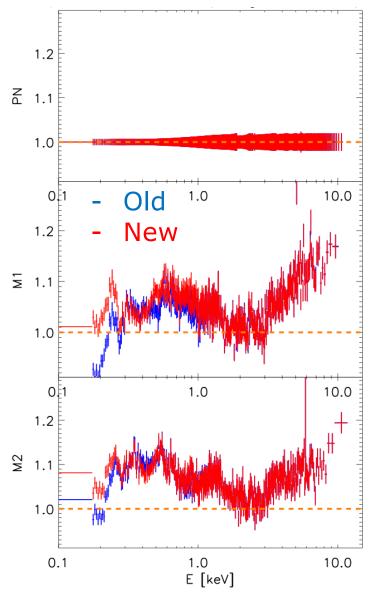





ESA UNCLASSIFIED - For Official Use

= II 🛌 == += II == 🔚 = 1 II II == = = 1 = II = II = II 💥 🖕 IV




N132D (Rev 3701)



ESA UNCLASSIFIED - For Official Use

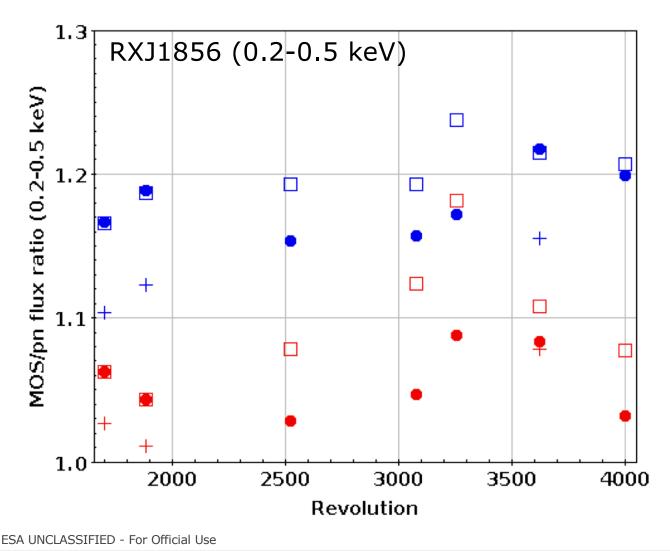
20 European Space Agency





CORRAREA sub-sample (37 sources)

Spectral model profiles from literature, fitted to pn and then compared to MOS.


Residuals stacked

Improvement marginal





MOS1, MOS2: ● (old RMF), □ (new RMF), + old RMF/old contamination



- MOS2 fluxes 10-13% higher than MOS1
- New RMFs push MOS fluxes up by ~2-5%
- New contamination model increases fluxes by up to 5%
- Fluxes 'time-stable' [MOS1(RMS)~4%, MOS2(RMS)~2%]

\*



#### **Released CCFs**

| Name of CCF                  | VALDATE    | EVALDATE | Blocks changed |
|------------------------------|------------|----------|----------------|
| EMOS1_CONTAMINATION_0002.CCF | 2000-01-01 |          | CONTAM_DEPTH   |
| EMOS2_CONTAMINATION_0002.CCF | 2000-01-01 |          | CONTAM_DEPTH   |

| Name of CCF             | VALDATE        | EVALDATE   | Blocks changed       |
|-------------------------|----------------|------------|----------------------|
| EMOSn_REDIST_0121.CCF   | 2013-04-27     | 2014-12-16 | CCD_REDISTRIBUTION-k |
| EMOSn_REDIST_0122.CCF   | 2014 - 12 - 16 | 2016-08-05 | CCD_REDISTRIBUTION-k |
| EMOSn_REDIST_0123.CCF   | 2016-08-05     | 2018-03-26 | CCD_REDISTRIBUTION-k |
| EMOSn_REDIST_0124.CCF   | 2018-03-26     | 2019-11-14 | CCD_REDISTRIBUTION-k |
| $EMOSn_REDIST_0125.CCF$ | 2019-11-14     | NONE       | CCD_REDISTRIBUTION-k |



## **Conclusions and issues**

- Contamination function updated. Redistribution matrices generated for 5 new epochs.
- Contamination function flattening. Greater depth in new curve likely largely a consequence of a different density value adopted for the absorber previously (SS got similar results in unpublished update).
- Redistribution functions for new epochs broadly evolve following earlier trends – some epoch 'quantisation', seen before.
- Low-energy peak moves to lower energies and shoulder broadens.
- For some test sources (e.g. RXJ1856, N132D), reduces discrepancy wrt pn data at E < 0.5 keV. But minimal improvement seen in CORRAREA subsample.
- New RMFs exacerbate flux difference cf pn for RXJ1856 by up to  ${\sim}5\%$  for M1



## **Conclusions and issues**

- Revision of contamination suggests need to redo RMFs for all epochs, not just new ones
- Ideally permit gain shifts in fitting
- Where possible, include Cal-closed data for higher energy RMF constraints
- Use of most up-to-date IACHEC models
- PSF issues when extracting spectra offset from source centroid absorbed into scalar when fitting but some residual energy dependence from PSF could be present.
- Ideally need to fit contamination and RMF simultaneously (plus assumption of spatial uniformity of contaminant) (and Eff area?) KD work on pn?

ESA UNCLASSIFIED - For Official Use

#### = II 🛌 == += II == 🚝 == II II == == 📰 II == 🖬 🖬 II == 👫 🚘 🕨



ESA UNCLASSIFIED - For Official Use XMM-OM Calibration | S. Ros@Ap26space Agency