XMM-Newton EPIC-pn

Updates to the Long-Term CTI corrections

XMM-EPIC CAL & OPS meeting, 3-4 June 2024

Ivan Valtchanov

- CCF Release note <u>XMM-SOC-CAL-SRN-0407</u>
 - CCF file EPN_CTI_0058 already available
 - Bulk reprocessing

Full Frame and extended

Large Window

Small Window

+ Timing and Burst modes

Need of an update

FF, Cu Kα, CalClosed only

0056 correction curves used data up to t=18 yr
→ Obvious under-correction at t > 21 yr.

Empirical updates for t>18 yr, FF mode

FF, Mn Kα

FF, Cu K α

Large and Small Window modes

For SW and LW mode

No QPB correction available in LW and SW mode (see action EPIC-TTD-031/1)

Using FF CalClosed with no LTCTI and no QPB

Poly(2) on solar minima

Residual as smooth spline

Keep the residual for each CCD and line

- Will use the residual shape for LW and SW mode
- Applicable to Al K α , Mn K α and Cu K α
- Update for t>18 yr (in general)

Updated curves for LW mode

LW, Al K α

Small Window (SW) change of strategy for Fe K $\!\alpha$

- Previously in CCF 0056, using ~10 AGNs with narrow Fe K α lines
 - Extrapolation to a common reference energy 6.4 keV, sources at different redshifts → lines at different energies

SW at 6.4 keV, using NGC 4151

- In this update: using only NGC4151, to avoid extrapolation
 - Several observations, most recent one at t=22.96 yr
 - + some with Chandra HETG (XRISM too)
 - Reference energy = best-fit line centroid from HETG at t=0.1 yr,
 → E = 6.3752 keV
- Using the Mn Kα, SW curve and adjust to NGC4151 data
- Validate with other AGN sources: NGC3516, MCG05-23-16,...

SW curve at 6.4 keV

Validation

Validate LW at 6.4 keV with Kepler SNR

Fe K α line, per region

SW at 6.4 keV

Best-fit Fe K α lines for AGN sources

EPIC-pn in SW and Chandra HETG

Conclusions

- Incremental update to all EPIC-pn modes (including TI + BU)
 - Extrapolation to t=30 yr
 - Change in SW modelling at 6.4 keV (using only NGC4151)
 - Change of reference energy to 6.3752 keV
 - Used in the bulk reprocessing of the XMM archive.

Future work

- Proposal to stop serendipitous CalClosed (CC) observations (to save filter wheel movements)
 - → challenging for energy scale calibration
 - → + the weaker Fe-55 source

➔ planning of cal observation with long CCs once or twice per year? Under analysis.

- Simultaneous QPB & LTCTI correction for future updates
 - Using the number of discarded lines as proxy for QPB (will be available for window modes)
 - Using Cu K α to predict Al K α and Mn K α (low S/N for Cal source)
- Update the spatial CTI ?

Predicted LTCTI ΔE/E in %

FF mode

SW mode

The End

Comparing the curves

$$\Delta E(t, y, E_0) = E_0 \times \left[1 - \left(\frac{1 - g(t)}{1 - a_0} \right)^y \right],$$

 E_0 is the correct line energy, g(t) is the T_COEFF curve in CCF, $a_0=T_COEFF(0)$, y= Distance from read-out node in RAWY in pixels.

Discussion

- Incremental update: CCF needed for bulk reprocessing
- Modelling E_{obs}/E_0 and using median RAWY in line core \rightarrow \overleftrightarrow
- Modelling T_COEFF (median RAWY per observation) -> 😔
- Need to understand why:
 - Median RAWY in line core $(\pm 1\sigma)$ as function of time
 - Normalisation $a_0 \rightarrow$ in some cases it needs changing
- Work in progress + simultaneous QPB & LTCTI correction for future updates

Median RAWY evolution

Time dependence

Exponential function on RAWY !

Linked to decreasing S/N?