

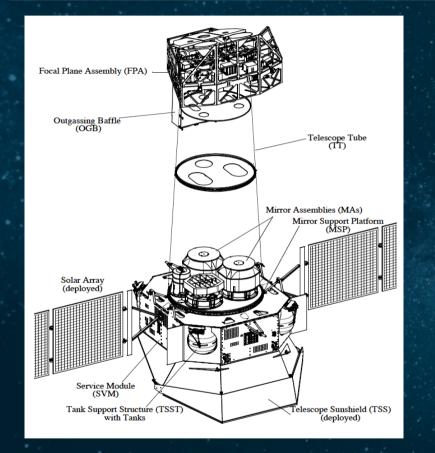
EPIC OPS-CAL meeting

eesa kmm-neuto kmm-neuto

ESA UNCLASSIFIED - For ESA Official Use Only

Marcus G. F. Kirsch June 2024

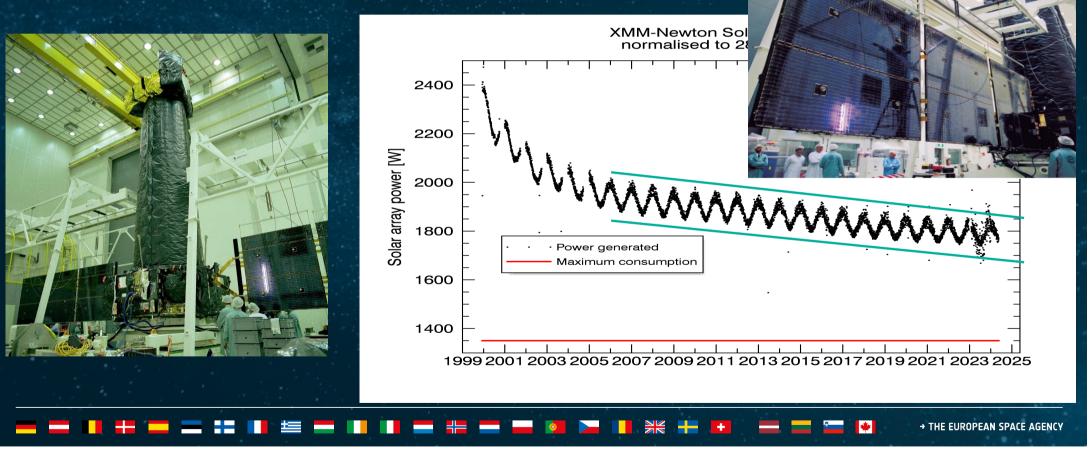
European Space Agency (ESA) European Space Operations Centre (ESOC)


→ THE EUROPEAN SPACE AGENCY

spacecraft sub systems are all healthy

Status o

→ THE EUROPEAN SPACE AGENCY

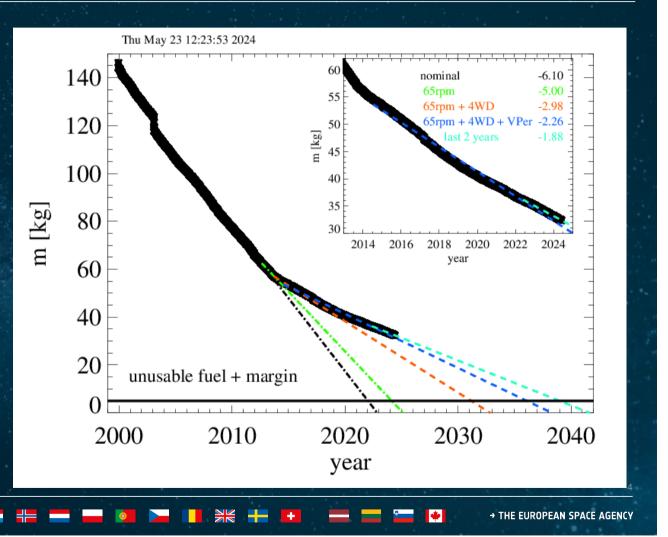

weight: 3.8 t, length: 10 m

- Attitude and Orbit Control System (AOCS)
 - 4 Reaction wheels, 4 IMUs (gyros), 2 star trackers, + ...
 - Redundant reaction control system using hydrazine thrusters
- Power + Thermal: 2 solar panels with 16 metre span, 2 batteries, various active heaters
- On Board Data Handling (OBDH)
- Radio Frequency system (RF): 2 Low Gain antennae plus redundant transponders
- Payload: 3 Wolter telescopes with 58 mirrors each, 3 cameras 2 gratings, active temperature control of mirrors and instruments

Money	Funded until	End 2026/2029
Fuel	remaining Use per year Mileage	~32 Kg < 2.5 kg/year 2034+
Thruster pulses	Remaining use per year Mileage	0 (200000 qualified) <4 100 2022 (B-system with full redundancy available, industry recommends to stay on A)
Solar array power	Maximum required Current margin	~ 1350 W ~ 400 W
Battery	According to industry	15+ y
Gyros/(IMUs)	Usage	< 36 %
Reaction wheels	Usage	< 65 %
Optocouplers	Mileage	~ 2028 +
RF switches Transponder switches	Usage	Stuck at one position Back up not used instead transponders are switched TX A LCL switches <2415 TX B LCL switches <2389 (Qualified to 25000)

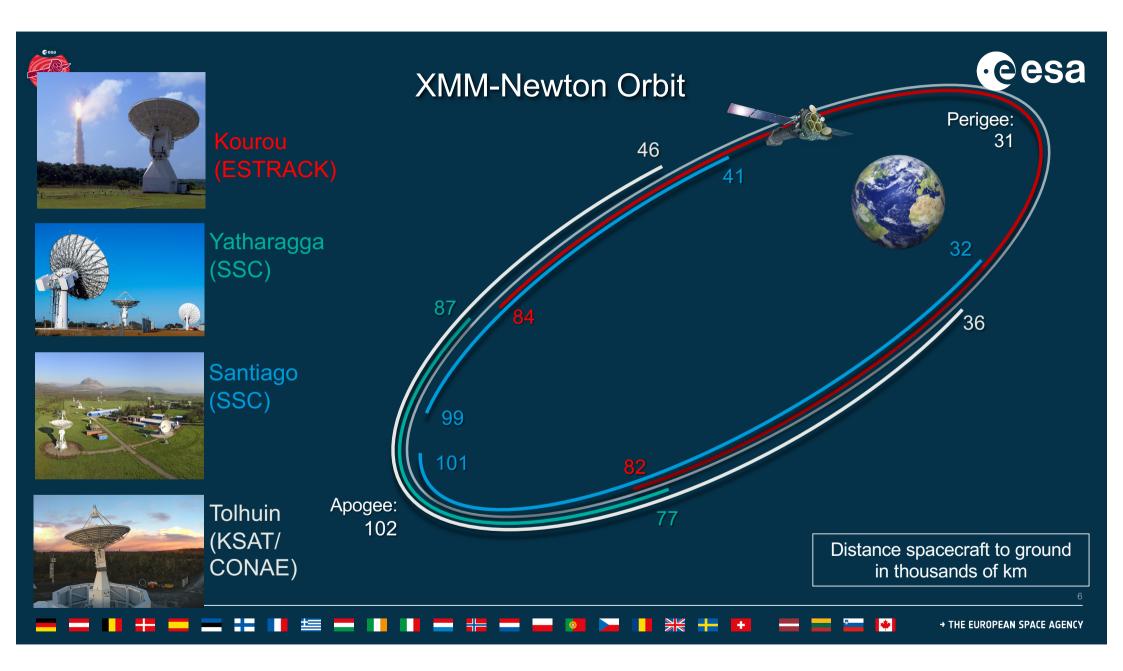
solar cell power has sufficient margin

- power generation capabilities are normal
- no sign of unexpected degradation visible



· eesa

fuel estimates give life time > 2034+


- Reaction wheels are the primary actuators for attitude control. Thrusters are only used for wheel unloading.
- Changed in 2013 the onboard attitude control software to use 4 reaction wheels instead of 3 before (use the back up wheel) called 4 wheel drive (4WD)
- the degree of freedom that is introduced by this change, allows to reduce the fuel consumption and to change wheel speeds without changing the S/C total momentum (null space operation).
- This reduced the fuel consumption by more than a factor of 2
- Note average fuel consumption - since 2014.5: 2.3
 - since last year : 1.8

Review of all subsystems ongoing

- Together with indusrtry we are reviewing all subsystems and life limiting items with the view to operate XMM towards the launch of Athena (now more late 30ies)
- Radiation dosis will be reevaluated with ESTEC experts to align model predictions better with reality, where possible
- Recent battery reconditioning activities show a trend of capacity reduction for BAT1 (details to be confirmed)
- Options for new operations concepts in case of failure or reduction of unit performance are discussed
- Potential end of life tests of SOHO may benefit XMM

XMM automation on board

by design only very limited onboard autonomy

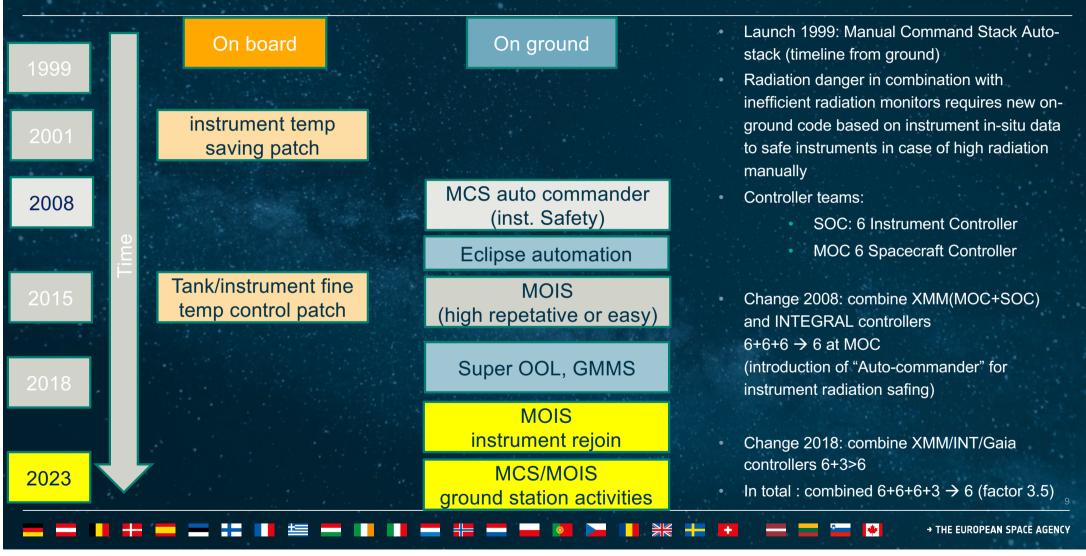
(mainly related to spacecraft safety) and only very limited storage capabilities, but no Mission Timeline on-board CDMU "autonomy" functions are limited to a small **time-tagged command buffer** and a number of mission specific monitoring and control tasks

time-tagged command buffer is used to ensure instruments are commanded safe before perigee passage, maintain instrument thermal control during eclipse, since a platform thermistor failure in 2009 to maintain tank heater control)

- 1999 launch version CDMU S/W: monitor and control task to command instruments safe in case of ESAM
- 2001 patch: monitor and control EPIC-pn instrument CCD temperature
- 2015 patch: thermal duty cycle and thermal closed loop function
 - parallel control of a number of heater circuits by commanding the heater transistor switch to a predefined duty cycle \rightarrow fuel migration and tank replenishment
 - closed loop control of a number of heater circuits by monitoring the associated thermistor temperature and commanding the heater switch to maintain a limit cycle between minimum and maximum values:
 - tank temperature control in between tank replenishing events
 - autonomous instrument heater control during and after eclipses affected by long ground station gaps \rightarrow spin off: more efficient use of batteries during eclipse (-30 %)
- 2025 NSM patch: fuel less safe mode plus further instrument monitoring and onboard safety

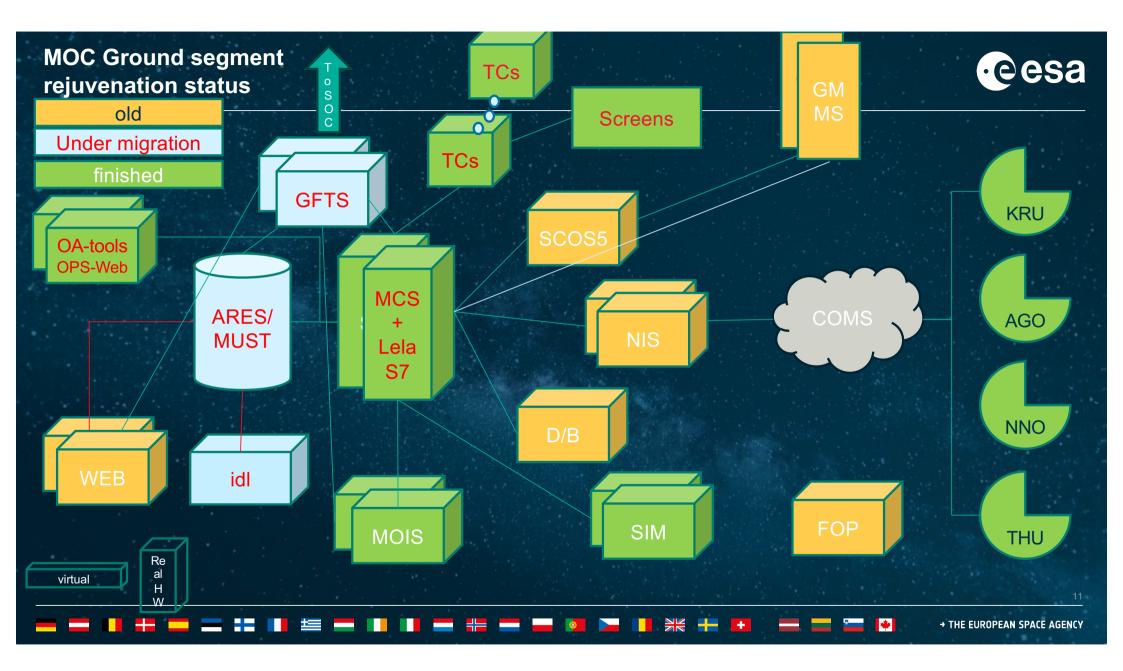
XMM Ground Automation 3.0 (2020-2023)

Full end to end operations of nominal instrument ops including radiation rejoin (2023)

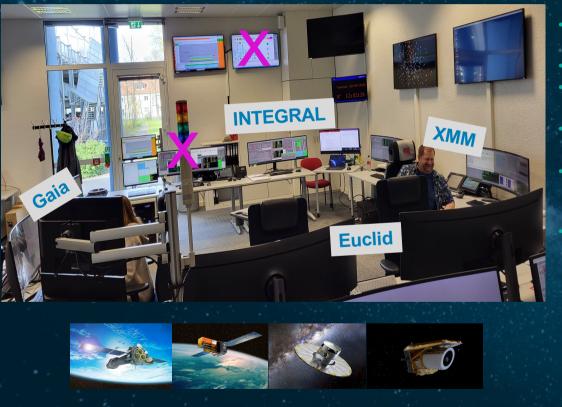

Full ground stations and on board antenae* handover without manual interaction neither of FCT nor ground station staff (2023, *2024)

→ very hugh reduction of SPACON workload in time for Euclid joining the SPACON team

XMM Automation History



XMM Ground Automation 4.0 + (2024-2025)


- 4.0 (incremental approach)
 - Flight Dynamics PSF and EPOS automation (with help of external consultancy and ESOC Al/automation initiative) (done)
 - CDMU reset recovery (done)
 - Tank Replenishment operations (underway)
 - Automated re-join of instruments for non nominal determined cases (slew failure and TM/TC gap) and finetuning (planned)
 - Near realtime data analysis/awareness using ARES instead of MUST (planned)

family of mission operations runs smoothly

- Joint SPACON team includes Euclid
- Joint Analyst team and combined engineering team for XMM/INTEGRAL under new Service Level Agreements
- D/B consolidation between missions using Dabys underway (2025)
- MUST archive migration to ARES (2024)
- LELA (radiation monitoring) will be migrated to new MCS (2024)
- New webserver infrastructure including near-realtime system in 2025
- AI system prototype for controller/engineering support $(\rightarrow \text{OCAI}: \text{``ESOC google on all systems''})$
 - Gaia will need less support soon and will discontinue science OPS early 2024
 - \rightarrow no need for super alarms anymore
 - → preparation for normal MCS monitoring underway (keeping however some non hot redundant capabilities from GMMS)
 - \rightarrow descoping of deconflicting tools and/or integration into OPSWEB (new ESOC monitoring tool)

Team changes

ESA:

Jim Martin INTEGRAL SOM as of 03/2024 (retiering 04/2025) → new XMM Deputy SOM Greta De Marco (joined 05/2024)

MK unit head of new merged XMM/INTEGRAL unit supporting as well Cheops and Smile (gradually less XMM involvement)

- Contractor services
 - New service approach for engineering and real time operations
 - lead engineer for XMM: Uwe Weissmann
 - lead engineer for INTEGRAL: Tim Finn
 - both engineering and real time OPS team now fully with consortium led by TPZ
 - Detlef Webert will retire early 2025 → new analyst Matthias Bissinger ramping up in Q4

ESOC changes

→ THE EUROPEAN SPACE AGENCY



- ESA is investing in a new control center at ESOC and will refurbish the site
- Timeline
 - New building 2025-2027
 - Move OPS from old to new
 - Sharing phase of buildings while refurbishing others Finalization by 2029
- Mitigation measures needed to reduce
 OPS impact to a minimum

conclusions and Outlook

- XMM-Newton S/C is in very good shape and scientific performance remains outstanding
- fuel limits life time to > 2034
- New service approach for engineering and real time operations
- Stability of the whole ground segment system is a key ingredient for successful operations and automation
- Fuel replenishment will be a key activity
- New safe mode and z-flip alla INTEGRAL might extend mission towards the launch of NewAthena
- proficient team and knowledge management are key factors

