Tight connection between the radio halo emission and the thermal ICM properties

Xiaoyuan Zhang (张啸远)

Max Planck Institute for Extraterrestrial Physics xzhang@mpe.mpg.de

 $P_{\rm RH} - [kT \times Y_X]_{r_{\rm RH}}$ relation

 Sample: 21 deeply observed (XMM core-excised cts >

10000) radio halo clusters in LoTSS DR2 footprint

- Two determinants of radio halo power:
 - 1. Amount of thermal ICM within the radio halo volume
 - 2. ICM temperature

Turbulent acceleration scenario

Acceleration rate = Acceleration coefficient × Turbulent flux $\epsilon_{\rm acc} \equiv C_{\rm acc} \times \sigma_v^3 k \rho$

• Resonant mechanisms, e.g., transit-time damping (Brunetti et al. 07 & 11)

$$C_{\rm acc} \propto \mathcal{M} c_{\rm s}$$

• Non-resonant mechanisms, e.g., adiabatic stochastic compression (Brunetti et al. 16 & 20) $C_{acc} \propto \mathcal{M}^{-1}c_s$

$$P_{\rm RH} \propto \int_{V_{\rm RH}} f(\mathcal{M}) c_{\rm s}^4 \rho \, \mathrm{d}V \propto f(\mathcal{M}) \left[T^2 M_{\rm gas} \right]_{r_{\rm RH}}$$

Ignoring the dependance of turbulent Mach number $f(\mathcal{M})$, the radio halo power at 150 MHz $P_{\text{RH},150\text{MHz}}$ has a tight correlation with $T^2 M_{\text{gas}}$ (also known as TY_X) within the radio halo volume.

Publication:

 \rightarrow

 The Planck clusters in the LOFAR sky. III. LoTSS-DR2: Dynamic states and density fluctuations of the intracluster medium, X. Zhang, A. Simionescu, F. Gastaldello, D. Eckert, L. Camillini, R. Natale, M. Rossetti, G. Brunetti et al., A&A 672, A42 (2023)

Reference:

- Brunetti, G., & Lazarian, A. 2007, MNRAS, 378, 245
- Brunetti, G., & Lazarian, A. 2011, MNRAS, 412, 817
- Brunetti, G., & Lazarian, A. 2016, MNRAS, 458, 2584
- Brunetti, G., & Vazza, F. 2020, Phys. Rev. Lett., 124, 051101