XMM-Newton Workshop 2024 List of Posters

1	G. Liu	Vortex Avalanches and Collective Motion in Neutron Star Interiors		
2	A. Mancini Pires	Isolated neutron star candidates from 4XMM-DR9		
3	A. A. Gencali	Long-term Evolutionary Links Between the Isolated Neutron Star Populations		
4	D. Íñiguez Pascual	Fitting X-ray and gamma-ray spectra of all known high-energy pulsars with a synchro-curvature radiation model		
5	N. Shchechilin	Nuclear pastas in neutron stars		
6	A. Kartha	Investigating a Common Origin among some GRBs and FRBs		
7	D. P. Pacholski	INTEGRAL observations of magnetars		
8	M. Baring	Pulsed and Polarized X-ray Emission from Neutron Star Surfaces		
9	S. Mereghetti	INTEGRAL discovery and XMM-Newton follow-up observations of a magnetar giant flare in the starburst galaxy M82		
10	R. Sathyaprakash	Long-term study of the 2020 magnetar-like outburst of the young pulsar PSRJ1846-0258 in Kes 75		
11	N. Chamel	Shallow heating in magnetars: role of electron captures		
12	N. Ul Sabah Rehan	Can a Magnetar Glitch Affect the X-ray Burst Properties?		
13	A. Ibrahim	Magnetar Bursts & their Extragalactic Lookalikes: What we learned from the Milky Way sources & how can this help finding magnetars in other galaxies		
14	P. Rau	Electron MHD in magnetar crusts with Landau-quantized electrons		
15	S. Ascenzi	Advancements in Three-Dimensional Thermal Evolution Modeling of Isolated Neutron Stars with MATINS Code		
16	V. Allard	Evidence of gapless neutron superfluidity from the late time cooling of transiently accreting neutron stars		
17	F. Castillo	Two-fluid simulations of ambipolar diffusion in neutron star cores		
18	N Moraga	Magnetothermal evolution in the cores of adolescent neutron stars: The Grad–Shafranov equilibrium is never reached in the 'strong-coupling' regime		
19	L. E. Rodríguez	Contrasting neutron star heating mechanisms with Hubble Space Telescope observations		
20	R. Kyer	A Multiwavelength Hunt for Transitional Millisecond Pulsar Candidates		
21	N. Niang	X-ray pulsations from neutron star low-mass X-ray binaries		
22	P. Stammler	The radius of a millisecond pulsar from its surface far-UV and soft X-rays emissions		
23	KY. Au	An Anti-Correlation Between the X-ray Luminosity and Optical Orbital Modulation of PSR J1023+0038		
24	A. Manca	Identification and characterisation of the gamma-ray counterpart of the transitional pulsar candidate CXOU J1109		
25	R. Mignon-Risse	GRMHD simulations of the X-ray switching modes in transitional millisecond pulsars		
26	B. Sen	It's Getting Hotter: PSR J1622-0315 and Its Increasing Irradiation and Asymmetric Heating		
27	M. Turchetta	Quantifying the irradiation and expanding the population of spider pulsars		
28	K. Koljonen	Spider luminosities and the invisible black widow		
29	B. Dorsman	Pulse Profile Modeling of the Accreting Millisecond X-ray Pulsar SAX J1808.4-3658		
30	M. Gornostaev	Correlation of the spectral hardness with the X-ray luminosity in bright X-ray pulsars		
31	J. Greiner	A helium-burning white dwarf binary as a supersoft X-ray source		
	i			

		Dulas to mulas Varietians in the Assertian V mu. Dulas Vale V 1			
32	V. Madurga-Favieres	Pulse-to-pulse Variations in the Accreting X-ray Pulsar Vela X-1			
33	C. Malacaria	Discovery of spin-phase-dependent QPOs in the supercritical accretion regime from the X-ray pulsar RX J0440.9+4431			
34	S. Popov	Probing the propeller regime with symbiotic X-ray binaries			
35	L. Townsend	10 years of SALT optical spectroscopic monitoring of Be X-ray binaries			
36	K. Tuerxunmaimaiti	Probing core cooling of transiently accreting neutron stars with X-ray data			
37	G. Vasilopoulos	Evolution of a 30-yr-duration post-nova pulsating supersoft source in the Large Magellanic Cloud			
38	D. Verma	NICER observations of Nearby Persistent Supersoft X-Ray Sources			
39	T. Ko	Fast winds blowing from a white dwarf left by the historical supernova 1181 and its X-ray emission			
40	R. Willer	Modelling the post-outburst thermal X-ray emission from classical novae			
41	A. Di Marco	Weakly magnetized accreting neutron stars as seen by IXPE			
42	P. Kretschmar	Observing X-ray lighthouses through a relativistic looking glass			
43	M. Ng	Probing the Atoll/Z Continuum with Neutron Star Low Mass X-ray Binary 1A 1744-361			
44	L. Ábalo	Variable structures in the stellar wind of the HMXB Vela X-1			
45	A. Bobrikova	Accretion onto weakly magnetized neutron stars: theory and its application to X-ray burster GX 13+1			
46	U. Ertan	Torque reversals of neutron stars in low-mass X-ray binaries			
47	N. Islam	Constraining the X-ray emitting regions in two eclipsing CVs with NuSTAR and XMM observations			
48	N. La Palombara	The role of XMM-Newton in the investigation of persistent BeXRBs			
49	I. Saathoff	Blind Source Separation for Decomposing X-ray Pulsar Profiles			
50	M. Miraç Serim	Insights from Swift J0243.6+6124 during its 2017-2018 outburst			
51	J. Stierhof	Disk torque models in comparison			
52	J. Chenevez	A catalogue of long thermonuclear X-ray bursts			
53	M. A. Díaz	A series of NICER Thermonuclear Bursts from UCXB M15 X-2			
54	T. Guver	Burst oscillations from 4U 1728-34 observed with NICER			
55	T. Boztepe	Burst-Disk Interaction in 4U 1636-536 as Observed by NICER			
56	N. O. Pinciroli Vago	Harnessing the power of groups for pulsating ULX demography			
57	F. Barra	X-ray spectral variability as a probe of the compact objects powering ULXs			
58	A. Belfiore	The Orbit of NGC 5907 ULX1			
59	S. Conforti	Modeling the emission and polarization properties of Pulsating Ultraluminous X-ray sources			
60	S. Kobayashi	Decomposing the X-ray spectrum of ultra-luminous X-ray pulsar NGC 7793 P-13			
61	G. Vasilopoulos	Spectral studies of super-Eddington accreting Neutron Stars in the Magellanic Clouds			

62	S. Friedrich	Searching the non-accreting white dwarf population in eROSITA data		
63 E. N. Toktas astronomic		Chemical enrichment of A2384 galaxy cluster and research of astronomical object's chemical enrichment that bends the bridge between galaxy clusters		
64	D. Misra	Studying the signatures of different physical processes on the X-ray luminosity function of high-mass X-ray binaries		
65	D. Kaltenbrunner	The population of high-mass X-ray binaries in the LMC detected during the first eROSITA all-sky survey		