Universitat


# Understanding the dynamics of neutron star magnetic field through 3D magneto-thermal simulations 



Clara Dehman
Postdoctoral Fellow clara.dehman@ua.es

Why we need 3D magneto-thermal models?



- Understanding the variety of population of isolated neutron stars and their evolutionary paths
- Realistic magnetic topology: complex and non-axisymmetric
- The need to model cooling curves, that depend on the 3d configuration
- 3D magnetic evolution leads to the formation of hotspots on the stellar surface

Why we need 3D magneto-thermal models?


- Understanding the variety of population of isolated neutron stars and their evolutionary paths
- Realistic magnetic topology: complex and non-axisymmetric
- The need to model cooling curves, that depend on the 3d configuration
- 3D magnetic evolution leads to the formation of hotspots on the stellar surface


## Thermal evolution \& cooling curves

$$
c_{V}(T) \frac{\partial\left(T e^{\nu}\right)}{\partial t}=\vec{\nabla} \cdot\left(e^{\nu} \hat{\kappa} \cdot \vec{\nabla}\left(e^{\nu} T\right)\right)+e^{2 \nu}\left(Q_{J}-Q_{\nu}\right)
$$

## Ingredients:

-Neutron star model: EoS + central pressure -> star structure \& composition (fixed)
-Heat capacity $C_{V}(\rho, T)$ : main contribution by neutrons in the core
-Thermal conductivity $\boldsymbol{\kappa}(\rho, T, \boldsymbol{B})$ very large (star core rapidly isothermal), dominated by electrons, becomes anisotropic in presence of magnetic field

- Neutrino emissivity $Q_{\nu}(\rho, T, \boldsymbol{B})$
-Sources of internal heat $Q_{j}$ : nuclear reactions, Ohmic dissipation, accretion...
-Hydrostatic equilibrium models of envelope (i.e., liquid outermost 100 m ), that due to its stronger gradients of density and temperature has much faster timescales than the interior -Emission model (atmosphere, blackbody, condensed surface...)


## Magnetic field evolution <br> - Hall MHD limit -

- Neutron stars interior $\longrightarrow$ complex multi-fluid system

० A solid crust is formed soon after birth $\longrightarrow$ restricted nuclei mobility $\longrightarrow$ conduction governed by electrons
o Core: full multi-fluid system


Ultrarelativistic free slectrons

- Approximation: electrons MHD limit in the crust (eMHD)

$$
\frac{\partial \boldsymbol{B}}{\partial t}=-\nabla \underbrace{\nabla \times\left[\frac{c^{2}}{4 \pi \sigma_{e}} \nabla \times\left(e^{\nu} \boldsymbol{B}\right)\right.}_{\begin{array}{c}
\text { Ohmic dissipative term: the } \\
\text { magnetic resistivity is very } \\
\text { sensitive to temperature } \\
\text { evolution and electron density }
\end{array}}+\underbrace{\left.\frac{c}{4 \pi e n_{e}}\left[\nabla \times\left(e^{\nu} \boldsymbol{B}\right)\right] \times \boldsymbol{B}\right]}_{\begin{array}{c}
\text { Hall drift term: It naturally } \\
\text { creates magnetic discontinuity } \\
\text { and transfers energy between } \\
\text { different scales. }
\end{array}}
$$

- Crustal-confined (perfect conductor at the crust-core interface).

○ Potential boundary conditions (i.e. no current, $\nabla \times \boldsymbol{B}=0$ ) - better force-free magnetosphere.

- Divergence-free magnetic field $\nabla \cdot B=0$.


## Schwarzschild cubed-sphere

In 3D spherical coordinates if you want to use finite-volume/difference methods, the axis is a singularity. The cubed sphere coordinates are a widely used solution, used in climate and atmospheric simulations
[Ronchi et al. 1996]
 $g_{i j}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & -\frac{X(\xi) Y(\eta)}{C(\xi) D(\eta)}\end{array}\right.$

$$
\left.\begin{array}{c}
0 \\
-\frac{X(\xi) Y(\eta)}{C(\xi) D(\eta)} \\
1
\end{array}\right)
$$

Desirable features

- Radial coordinates (r)
- No axis-singularity
- GR correction


## MATINS the brand new 3D code

Dehman, Viganò, Pons \& Rea 2022, MNRAS (DOI: $10.1093 / \mathrm{mnras} /$ stac2761): Cubed-sphere grid + Magnetic formalism Ascenzi, Viganò, Dehman, Pons \& Rea, Perna 2024, submitted to MNRAS: Thermal formalism (See S. Ascenzi's poster) Dehman, Viganò, Ascenzi, Pons \& Rea 2023, MNRAS (DOI: 10.1093/mnras/stad1773): First 3D magneto-thermal simulation

## Soon to be public.

What's better than 2D:

- Simulation of 3D magnetic modes, hotspots, and light curves
- Better documentation, use of novel coordinates (cubed-sphere)
- Optimization and use of OpenMP

Advance obtained (only another 3D code was existing so far):

- Realistic 3D evolution and topology, appearance of hotspots
- State-of-the-art microphysics and realistic structure
- Numerical scheme to better capture non-linear dynamics
- General relativistic correction
- State of art envelope model
- Flexibility in implementing new physics
- Documentation and modularity (for public)



Video credit: C. Dehman



$$
\operatorname{Avg}(B) \sim 10^{14} \mathrm{G} \longrightarrow \text { Magnetar-like initial field }
$$

## 3D magneto-thermal evolution



Field keeps a strong memory of the initial large-scale structures

- Hall Cascade: redistribution of the magnetic energy over different spatial scales
- Small-scale multipoles dissipate faster $\left(L^{2} / \eta_{b}\right)$-> Enhanced Ohmic heating
- Hall balance is reached in the system $-l^{-2}$ slope -
- Initial large scale quadrupole remains dominant

3D magneto-thermal evolution


- Initial surface dipolar field - choice of radial function
- The surface gets populated by small scale multipoles.
- The surface dipolar magnetic field does not grow in time.

3D magneto-thermal evolution


Thermal luminosity suitable to describe CCOs \& low-field magnetars.

## What about Magnetars?

How can we form the strong dipolar fields, responsible for the spin-down torque?

## Reality of inverse cascade in neutron star crusts

A scenario for generating a large-scale dipolar field is through an inverse cascade, starting with an initial helical magnetic field.

## Initial field:

Helical, or in other words, a force-free field.
Random initial field peaking at $l_{0} \sim 100$.
Causal spectrum as used in the cosmological context.

## Inverse Cascade occurs!

Energy transferred from small to large-scale multipoles.

## Not observed in previous neutron star simulation studies.

Magnetic field dissipates over time! Boundary conditions' impact?
Extreme aspect ratio - thin crust - limits the inverse cascade.
"Brandenburg 2020"

Inverse cascade: magnetic boundary conditions


Outer Boundary Conditions: Potential current-free Inner Boundary Conditions: Perfect conductor

Outer Boundary Conditions: Periodic BC Inner Boundary Conditions: Periodic BC

Typically used boundary conditions are causing further dissipation of the magnetic field.

Pencil Code

## Left hemisphere:

Field lines: Poloidal magnetic field. Colorbar: Toroidal magnetic field.

## Right Hemisphere:

Electric current.
Force-free Magnetosphere
$0.0 \times 10^{0}$ [yr]


Crust enlarged for visualisation purposes

Force-free magnetosphere (2D)
-Physics informed neural network -

Vacuum Magnetosphere
$0.0 \times 10^{0}[\mathrm{yr}]$


The currents can flow in the magnetospheric

$$
(\vec{\nabla} \times \vec{B}=\alpha \vec{B}) .
$$

Toroidal field does not vanish at the surface $\mathscr{T}(\mathscr{P})=s_{1} \mathscr{P}+s_{2} \mathscr{P}^{2}$

> Crust-magnetosphere coupling affects the interior field evolution

## Summary \& ongoing research

MATINS a new 3D code for magneto-thermal evolution in isolated neutron star crust.
"To be public soon"
Long-term evolution ( $10^{5} \mathrm{yr}$ ) with a strong magnetic field $\sim 1 e 14 \mathrm{G}$ with $R_{m}$ a few hundreds.
Proper treatments of microphysics, envelope models, axial singularity, field topology, temperature, etc.
Hall cascade, Inverse Hall cascade, outburst, etc.
Careful with boundary conditions...
A fot more can be explored !!

Magnetosphere in 3D using PINN
In collaboration with
J. Urban, P. Stefanou \& J. Pons

Chiral Magnetic Instability

In collaboration with Jose A. Pons \&
A. Brandenburg


## Axion field in neutron star crust <br> In collaboration with A. Gomez \& J. Pons

