Exploring the nature of ultra-luminous X-ray sources across stellar population ages using detailed binary evolution calculations

Devina Misra

Image: NASA/CXC/M.Weiss

Ultra-luminous X-ray sources (ULXs)

Eddington limit

- $10 M_{\odot}$ BH ~ 10^{39} erg s-1
- $1.4 M_{\odot}$ NS ~ 1.5×10^{38} erg s-1
- Physical limit assuming spherical symmetry

Devina Misra

Ultraluminous X-ray Source

 $4\pi GMc$ $L_{\rm Edd}$ K

^[1] Fabbiano et al. (1989) ch/M. Brightman et al.; Optical: NASA/STScl Image: X-ray: NASA/CXC/Ca

X-ray pulsations discovered in M82 X-2 ullet

$L_{\rm Edd}(1.4{ m M}_{\odot}~{ m NS})pprox$ 1038 erg s-1

[1]

- X-ray pulsations discovered in M82 X-2
- Since then more pulsating ULXs discovered

Fürst et al. (2016); Israel et al. (2017b); Motch et al. (2011); Motch et al. (2014); Israel et al. (2017a), Carpano et al. (2018); Heida et al. (2019); Ray et al. (2019); Vasilopoulos et al. (2018); Brightman et al. (2018); Sathyaprakash et al. (2019); Grisé et al. (2008); Zhang et al. (2019b); Doroshenko et al. (2018); Ge et al. (2017); Jenke & Wilson-Hodge (2017); Kennea et al. (2017); Rodríguez Castillo et al. (2019)

 $L_{\rm Edd}(1.4{
m M}_{\odot}~{
m NS})pprox$ 10³⁸ erg s⁻¹

=> Part of ULX have NS accretors

Madrid 2024

4

Populations synthesis study of ULXs ^[2]

- 10⁷ initial ZAMS binaries
- Instantaneous burst star formation ages of 5, 10, 40, 100, 300, and 1000 Myr

Parameters	Model A	Model B
Remnant mass prescription	Patton & Sukhbold (2020)	Patton & Sukhbold (2020)
Natal kick normalization	BH mass normalized kicks	No kick normalization
Orbit circularization at RLO	Conserved angular momentum	Conserved angular momentum
CE efficiency (α_{CE}).	1.0	0.3
CE core-envelope boundary	At $X_{\rm H} = 0.30$	At $X_{\rm H} = 0.30$
Observable wind-fed disk	Hirai & Mandel (2021)	No criterion

Fragos et al. (2023)

^[1] Misra et al. (2023)

^[2] Misra et al. (2024)

Populations synthesis study of ULXs ^[2]

- 10⁷ initial ZAMS binaries
- Instantaneous burst star formation ages of 5, 10, 40, 100, 300, and 1000 Myr

Parameters	Model A	Model B
Remnant mass prescription	Patton & Sukhbold (2020)	Patton & Sukhbold (2020)
Natal kick normalization	BH mass normalized kicks	No kick normalization
Orbit circularization at RLO	Conserved angular momentum	Conserved angular momentum
CE efficiency (α_{CE}).	1.0	0.3
CE core-envelope boundary	At $X_{\rm H} = 0.30$	At $X_{\rm H} = 0.30$
Observable wind-fed disk	Hirai & Mandel (2021)	No criterion

Check out my poster!!! No. 17

Fragos et al. (2023)

^[1] Misra et al. (2023)

^[2] Misra et al. (2024)

Populations synthesis study of ULXs^[2]

- 10⁷ initial ZAMS binaries
- Instantaneous burst star formation ages of 5, 10, 40, 100, 300, and 1000 Myr

Parameters	Model A	Model B
Remnant mass prescription	Patton & Sukhbold (2020)	Patton & Sukhbold (2020)
Natal kick normalization	BH mass normalized kicks	No kick normalization
Orbit circularization at RLO	Conserved angular momentum	Conserved angular momentum
CE efficiency (α_{CE}).	1.0	0.3
CE core-envelope boundary	At $X_{\rm H} = 0.30$	At $X_{\rm H} = 0.30$
Observable wind-fed disk	Hirai & Mandel (2021)	No criterion

• The magnitude of the NS kicks imparted are drawn from a Maxwellian distribution with σ = 265.0 km s⁻¹, based on pulsar observations (Hobbs et al. 2005)

Fragos et al. (2023)

^[1] Misra et al. (2023)

^[2] Misra et al. (2024)

Super-Eddington Accretion Disc

Devina Misra

^[1] Shakura & Sunyaev (1973)

^[2] King et al. (2001)

^[3] King (2009)

Populations synthesis study of ULXs ^[1]

Parameters	Model
Natal kick normalization	BH ma
CE efficiency (α_{CE}).	1.0

^[1] Misra et al. (2024)

Parameters	Model
Natal kick normalization	BH ma
CE efficiency (α_{CE}).	1.0

Devina Misra

Nature of the accretors

- BHs decrease with age and NSs start to dominate around 100 Myr
- Model B has less BH binaries due to stronger kicks

^[1] Misra et al. (2024)

Populations synthesis study of ULXs ^[1]

Geometrically beamed emission

- Mean beaming factor denotes the fraction of observed ULXs
- NSs more strongly beamed than BHs

Parameters	Model
Natal kick normalization	BH ma
CE efficiency (α_{CE}).	1.0

^[1] Misra et al. (2024)

Observable pulses in NS-ULXs^[1]

• King & Lasota (2020) proposed the suppression of X-ray pulses in NS binaries

^[1] Misra et al. (2024)

^[2] King and Lasota (2020)

^[3] King and Shaviv (1984)

Limits of accreting specific angular momentum

• At the NS radius (12.5km)

(Most et al. 2018; Riley et al. 2019; Miller et al. 2019; Abbott et al.2020; Landry et al. 2020; Biswas 2021; Kim et al. 2021; Raaijmakers et al. 2021)

• At the magnetospheric radius for a NS with 10^{12} G (Frank et al. 2002)

Observable pulses in NS-ULXs^[1]

^[1] Misra et al. (2024)

Observable pulses in NS-ULXs^[1]

Limits of accreting specific angular momentum

• At the NS radius (12.5km)

(Most et al. 2018; Riley et al. 2019; Miller et al. 2019; Abbott et al.2020; Landry et al. 2020; Biswas 2021; Kim et al. 2021; Raaijmakers et al. 2021)

• At the magnetospheric radius for a NS with 10^{12} G (Frank et al. 2002)

Exploring the nature of ultra-luminous X-ray sources across stellar population ages using detailed binary evolution calculations

https://arxiv.org/abs/2309.15904

ULX populations depend on the assumptions of physics and age, affecting various aspects of ULXs like properties of accretors, beamed emission, and observations of pulses

Devina Misra

Key takeaway

Thank you for your attention!

Populations synthesis study of ULXs ^[1]

- Intermediate mass stars in the range of 2 to 8 ${\rm M}_{\odot}$

$L_{\rm X} \ ({\rm erg \ s^{-1}})$	1.8×10^{40}
$M_{\rm acc} ({\rm M}_{\odot})$	1.40
$M_{\rm donor}~({ m M}_{\odot})$	$\gtrsim 5.20$
$P_{\rm orb}$ (days)	2.52
$P_{\rm spin}$ (s)	1.37
i	$< 60^{\circ}$

M82 X-2

Madrid 2024

Ultra-luminous X-ray sources (ULXs)

X-ray binary

(Gebhardt et al. 2005; Gerssen et al. 2002; Mann et al. 2019; Miller-Jones et al. 2012; Perera et al. 2017; Tremou et al. 2018; Zocchi et al. 2019)

• GW190521 (Abbott et al. 2020)

Ultra-luminous X-ray sources (ULXs)

X-ray binary

Super-Eddington Accretion Disc

Devina Misra

^[1] Shakura & Sunyaev (1973)

^[2] King et al. (2001)

^[3] King (2009)

Stability of RLO mass transfer

Devina Misra

Stability of RLO mass transfer

Devina Misra

Stability of RLO mass transfer

Devina Misra

Ultra-luminous X-ray sources (ULXs)

How do they attain their bright luminosities?

Ultraluminous X-ray Source

Devina Misra

How were they formed?

^[1] Fabbiano et al. (1989) ch/M. Brightman et al.; Optical: NASA/STScl Image: X-ray: NASA/CXC/Ca

[1] X-ray pulsations discovered in M82 X-2 lacksquare

M82 X-2

 1.8×10^{40} $L_{\rm X} \ ({\rm erg \ s^{-1}})$ $M_{\rm acc} \, ({\rm M}_{\odot})$ 1.40 $M_{\rm donor}~({\rm M}_{\odot})$ $\gtrsim 5.20$ $P_{\rm orb}$ (days) 2.52 $P_{\rm spin}$ (s) 1.37 $< 60^{\circ}$ i

Devina Misra

Image: Tsygankov S. et al. (2016)

 $L_{\rm Edd}(1.4{
m M}_{\odot}~{
m NS})pprox$ 10³⁸ erg s⁻¹

Time averaged accretion luminosity

Time-averaged isotropic-equivalent accretion luminosity $\langle L_{acc}^{iso} \rangle$ (erg s⁻¹)

Qualitatively agrees with Tauris et al. (2000) and Shao & Li (2012)

Defining q =
$$\frac{M_{acc}}{M_{donor}}$$

Case A: Donor on the MS

Case B: Donor in H-shell burning phase

Case C: Donor after core-He exhaustion

Qualitatively agrees with Tauris et al. (2000) and Shao & Li (2012)

Defining q =
$$\frac{M_{\rm acc}}{M_{\rm donor}}$$

Case A: Donor on the MS

Case B: Donor in H-shell burning phase

Case C: Donor after core-He exhaustion

Qualitatively agrees with Tauris et al. (2000) and Shao & Li (2012)

Defining q =
$$\frac{M_{\rm acc}}{M_{\rm donor}}$$

Case A: Donor on the MS

Case B: Donor in H-shell burning phase

Case C: Donor after core-He exhaustion

Qualitatively agrees with Tauris et al. (2000) and Shao & Li (2012)

Defining q =
$$\frac{M_{\text{donor}}}{M_{\text{acc}}}$$

Radiative envelope:

Convective envelope:

Devina Misra

