Recent Advances in the Modeling of Type I X-Ray Bursts and Nova Outbursts

Jordi José

Dept. Physics, Technical University of Catalonia (UPC) & Institute of Space Studies of Catalonia (IEEC), Barcelona

Classical Novae and X-Ray Bursts in a Nutshell

Classical Novae	X-Ray Bursts (Type I)
Moderate rise times (<1 – 2 days) $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ $E_{output} \sim 10^{45} \text{ ergs}$	Fast rise times (<1 - 10 s) $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ $E_{output} \sim 10^{39-40}$ ergs [in 10- 100 s]
Mass ejected: $10^{-7} - 10^{-4} M_{\odot}$ (~10 ³ km s ⁻¹)	Mass ejected?
Recurrence: $\sim 10^4 - 10^5$ yr Frequency: ~ 50 yr ⁻¹ [Obs. ~ 10 yr ⁻¹]	Recurrence: ~ hrs – days Sources detected: ~ 100

Novae are XRBs in slow motion...

...XRBs are novae in fast forward

T. Kormpakis' talk

WD + MS (often, K-M dwarfs) NS + MS

but sometimes more evolved companions (e.g., RG)

Type Ia (or thermonuclear) **Supernovae** [SN Ia] **Classical Nova** Outbursts [CN]

WD

X-Ray Bursts [XRBs]: NS

... but not only!

Jordi José

Stellar Mergers and Collisions

Guerrero, García-Berro & Isern, A&A (2004)

frequency $\sim f(type Ia SNe)$

Jordi José

Head-on collision of two neutron stars (R. Cabezón, D. García-Senz et al., UPC Barcelona)

3D Hydrodynamic Simulations of White Dwarf-Main-Sequence Star Collisions

I. Head-on Collisions

C. J. T. van der Merwe¹², S. S. Mohamed¹²³⁴, J. Jose⁵⁶, M. M. Shara⁸, and T. Kaminski⁷

¹ Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.

² South African Astronomical Observatory, P.O Box 9, Observatory, 7935, Cape Town, South Africa.

³ Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA.

-0.5

⁴ NITheCS National Institute for Theoretical and Computational Sciences, South Africa.

⁵ Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 16, 08019 Barcelona, Spain.

⁶ Institut d'Estudis Espacials de Catalunya, c/Esteve Terradas 1, 08860 Castelldefels, Spain

⁷ Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rabiańska 8, 87-100 Toruń, Poland.

⁸ Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA

t=159 [s] t=159 [s] t=121 [s] t=198 [s t=12 s t=198 [s] t=236 [s] t=274 [s] t=312 [s -389 [s] 6 t=351 [s] t=389 [s] t=427 [s] 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0 0.5 0 0 0.5 0 0 x [R_{sun}] x [R_{sun}] x [R_{sun}] x [R_{sun}] x [R_{sun}] x [R_{sun}] Log T Log p

A&A, submitted

2

Jordi José

Jordi José

JJ (2016)

1D have been successful in reproducing the *gross* observational features that characterize classical novae (e.g., light curves, nucleosynthesis...), but the assumption of spherical symmetry excludes an entire sequence of events \rightarrow Multidimensional models

* The long-term evolution of a nova involves the interaction between the ejecta, the disk, and the stellar companion

J. Figueira (PhD thesis 2023)

A&A 613, A8 (2018) https://doi.org/10.1051/0004-6361/201731545 © ESO 2018

Astronomy Astrophysics

Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star*

Joana Figueira^{1,2}, Jordi José^{1,2}, Enrique García-Berro^{2,3}, Simon W. Campbell^{4,5,6}, Domingo García-Senz^{1,2}, and Shazrene Mohamed^{7,8,9}

 $P_{orb} \sim 9 \ hr$

Jordi José

The Recurrent Nova ID Card

- long period binaries: very homogeneous class (WD + RG)
ex: RS Oph

- short period binaries: heterogeneous class (WD + MS)
→ Subclasses: U Sco, CI Aql, T Pyx [Anupama 2007]
Recurrence time: 1 – 100 yr

NOT all the accreted material is ejected \rightarrow SN Ia progenitors

Jordi José

Recurrence time: $1 - 100 \text{ yr} \rightarrow$

 $M_{acc} \sim 10^{-7} - 10^{-8} M_{\odot} \text{ yr}^{-1}$ M_{WD} close to Chandrasekhar limit High initial L_{WD}

Hydrodynamic Simulations of the Recurrent Nova T Coronae Borealis (T CrB)

Jordi José^{1,2} and Margarita Hernanz^{2,3}

- ¹ Departament de Física, EEBE, Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 16, E-08019 Barcelona, Spain
- ² Institut d'Estudis Espacials de Catalunya (IEEC), c/Esteve Terradas 1, E-08860 Castelldefels, Spain
- ³ Institut de Ciències de l'Espai (ICE-CSIC), Campus UAB, Camí de Can Magrans s/n, E-08193 Bellaterra, Spain e-mail: jordi.jose@upc.edu

May 8, 2024

A&A, in prep.

Jordi José

Interaction Between the Ejecta, the Accretion Disk, and the Secondary Star in the Recurrent Nova System U Sco

Joana Figueira^{1,2}, Jordi José^{1,2}, Rubén Cabezón³, and Domingo García-Senz^{1,2}

A&A, submitted

 12000 ± 2000 pc from Earth

Seen in outburst in 1863, 1906, 1936, 1945?, 1969?, 1979, 1987, 1999, 2010... and **June 6, 2022**

9.77×10⁶ SPH particles (disk ~ 2000 p.; ejecta ~3900 p.)

Recent Advances in the Modeling of Stellar Explosions

Introduction || Classical Novae || X-Ray Bursts

Jordi José

A. Sanz (PhD thesis)

Day 1 00:00 San

Sanz, García-Senz & JJ (2024, in preparation)

10⁶ SPH particles (2D axisym.) \rightarrow 10⁹ particles (3D)

Jordi José

* Ignition and Front Propagation

The build-up of **convective eddies** at the envelope's base (2-D) causes **shear flow** at the core/envelope interface [Kelvin-Helmholtz instability]: pure "solar-like" accreted material can be **enriched** at the late stages of the TNR by some sort of *convective overshoot* (Woosley 1986), leading to a powerful nova event!

Kelvin-Helmholtz instabilities

Casanova, JJ, García-Berro, Shore & Calder (2011), Nature

LETTER

Jordi José

3D Models of Mixing

doi:10.1038/nature10520

Kelvin–Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions

Jordi Casanova^{1,2}, Jordi José^{1,2}, Enrique García-Berro^{3,2}, Steven N. Shore⁴ & Alan C. Calder⁵

490 | NATURE | VOL 478 | 27 OCTOBER 2011

MareNostrum II (BSC, 2006) 94 Tflops, 10 240 cores MareNostrum III (BSC, 2013) 1 Phops, 48 000 cores MareNostrum IV (BSC, 2017) 14 Pflops, 165 888 cores MareNostrum V (BSC, 2023) 314 Pflops, 680 960 cores [Pre-exascale HPC; 8th in the TOP500 Supercomputers]

Jordi José

12321 Models

A&A 634, A5 (2020) https://doi.org/10.1051/0004-6361/201936893 © ESO 2020

123–321 models of classical novae

Jordi José^{1,2}, Steven N. Shore³, and Jordi Casanova²

- ¹ Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10, 08930 Barcelona, Spain e-mail: jordi.jose@upc.edu
- ² Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain
- ³ Dipartimento di Fisica "Enrico Fermi", Università di Pisa and INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

Received 11 October 2019 / Accepted 17 December 2019

When mixing is treated "the best we can", the **WD mass** <u>decreases</u>

Hydrodynamical shear mixing in subsonic boundary layers and its role in the thermonuclear explosion of classical novae

Jordi José

Marco Bellomo^{1,2}, Steven N. Shore^{2,3}, and Jordi José⁴

Jordi José

 \rightarrow Accretion flow funneled by the magnetic field of the white dwarf (localized TNR)

Article

Nature | Vol 604 | 21 April 2022 | **447**

Localized thermonuclear bursts from accreting magnetic white dwarfs

https://doi.org/10.1038/s41586-022-04495-6

Received: 4 October 2021

Accepted: 1 February 2022

Published online: 20 April 2022

S. Scaringi¹[⊠], P. J. Groot^{2,3,4}, C. Knigge⁵, A. J. Bird⁵, E. Breedt⁶, D. A. H. Buckley^{3,4,7}, Y. Cavecchi⁸, N. D. Degenaar⁹, D. de Martino¹⁰, C. Done¹, M. Fratta¹, K. Iłkiewicz¹, E. Koerding², J.-P. Lasota^{11,12}, C. Littlefield^{13,14}, C. F. Manara¹⁵, M. O'Brien¹, P. Szkody¹⁴ & F. X. Timmes^{16,17}

Nova explosions are caused by global thermonuclear runaways triggered in the

Jordi José

Jordi José

Mass Ejection

The potential impact of XRB nucleosynthesis on **Galactic abundances** is still a matter of debate:

Jordi José

Ejection from a NS **unlikely** because of its large **gravitational potential** (ejection from the surface a NS of mass *M* and radius *R* requires $GMm_p/R \sim 200$ MeV/nucleon, whereas only a few MeV/nucleon are released from thermonuclear fusion)

$$NS \rightarrow M_{NS} \sim 1.4 M_{\odot}, R_{NS} \sim 10 \text{ km} \rightarrow V_{esc} = \sqrt{2G M_{NS}/R_N} \sim 190\ 000 \text{ km s}^{-1}$$

$$[WD \rightarrow M_{WD} \sim 1 M_{\odot}, R_{WD} \sim 6000 \text{ km} \rightarrow V_{esc} \sim 7000 \text{ km s}^{-1}]$$

XRBs halted by fuel consumption (due to efficient CNO-breakout) rather than by expansion \rightarrow nearly **constant pressure** at ignition depth

doi:10.1088/0067-0049/189/1/204

HYDRODYNAMIC MODELS OF TYPE I X-RAY BURSTS: METALLICITY EFFECTS

Jordi José^{1,2}, Fermín Moreno¹, Anuj Parikh³, and Christian Iliadis^{4,5}

¹ Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, C./ Comte d'Urgell 187, E-08036 Barcelona, Spain; jordi.jose@upc.edu, moreno@ieec.fcr.es

² Institut d'Estudis Espacials de Catalunya (IEEC), Ed. Nexus-201, C/ Gran Capità 2-4, E-08034 Barcelona, Spain
³ Physik Department E12, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany; anuj.parikh@ph.tum.de
⁴ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA; iliadis@unc.edu
⁵ Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA
Received 2009 December 16; accepted 2010 May 24; published 2010 June 30

A&A 678, A156 (2023) https://doi.org/10.1051/0004-6361/202346190 © The Authors 2023

Mass-loss and composition of wind ejecta in type I X-ray bursts

Y. Herrera^{1,2,3}, G. Sala^{1,2}, and J. José^{1,2}

¹ Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 16, 08019 Barcelona, Spain

² Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain

³ Institute of Space Sciences, c/Can Magrans, 08193 Cerdanyola del Vallès, Barcelona, Spain e-mail: herrera@ice.csic.es

Received 20 February 2023 / Accepted 5 May 2023

XRB Model with 1.4 M_{sun} , 13.1 km NS; $Z_{acc} = 0.02$, and $M_{acc} = 1.75 \times 10^{-9} M_{sun} \text{ yr}^{-1}$) $\rightarrow M_{ejec} = 3.1 \times 10^{-14} M_{sun}!$

0.1% of the envelope is ejected per burst (⁶⁰Ni, ⁶⁴Zn, [⁶⁸Ge], & ⁵⁸Ni)

Y. Herrera's

talk

Type I XRB Models with Rotation

First models with rotation!

Study of the effect of (**shellular**) **rotation** on type I X-ray burst properties

D. Martin (PhD Thesis 2023)

- **Pressure-lifting effect** caused by rotation: maximum density and pressure at the base of the envelope decrease as the angular velocity of the envelope increases
- The size of the envelope shows a significant growth with the increase of the angular velocity (up to 66% for the fastest rotation model considered)
- Bursts with higher angular velocities have smaller recurrence times

Brightest bursts are those with smallest angular velocity Ω_0 (bursts with high rotation rates have long decays [increase up to 45%] and broad light curves)

$$P_{crit} = \frac{G M_{NS}}{4\pi R_{NS}^4} \Delta M_{acc}$$

Jordi José

Martin & JJ, in prep.

Local Organizing Committee (LOC)

Francisco Calviño (UPC) Yuri Cavecchi (UPC) Margarita Hernanz (ICE-CSIC, IEEC) Jordi Isern (RACAB, ICE-CSIC, IEEC) Jordi José (UPC, IEEC), **Chair** Jordi Llorca (UPC) Kelsey Lund (NCSU, LANL) Marina Martínez (UAB) Arnau Rios (UB, ICC-UB) Glòria Sala (UPC, IEEC) Aldo Serenelli (ICE-CSIC, IEEC) Laura Tolós (ICE-CSIC, IEEC), **Vice-Chair** Josep M. Trigo-Rodríguez (ICE-CSIC, IEEC)

Anna Bertolín (IEEC) Pilar Montes (IEEC)

NUCLEI IN THE COSMOS XVIII Girona [Conference Center] June 15-20, 2025

NIC SCHOOL Barcelona [Royal Academy of Sciences & Arts] June 9-13, 2025 Thank you for your attention!

Jordi José

Recent Advances in the Modeling of Type I X-Ray Bursts & Classical Novae The X-Ray Mysteries of Neutron Stars and White Dwarfs, ESAC, June 5 – 7, 2024