THE QPOS AWAKEN IN THE QUEST FOR PULSATING ULXS

MATTEO IMBROGNO

Collaborators: Gian Luca Israel, Roberta Amato, Guillermo Andres Rodríguez Castillo, Sara Motta, Felix Fuerst, and many others

XMM-NEWTON Workshop 5/6/2024

QUASI-PERIODIC OSCILLATIONS

- QPOs: broad features in the PDS.
- **Quality factor**: $Q = v/\Delta v > 2$.
- Related to instabilities in the disk and/or precession of the disk.

- Relation between the frequency v and the mass M_{BH} of the accretor.
- Lower $v \longrightarrow$ higher mass.

QPO IN ULXS

- Atapin+ 2019: sample of 5 ULXs for which QPOs have been detected.
- Strohmayer+ 2007, 2009: mHz QPO in M82 X-1 and NGC 5408 X-1.
- Early 2000's: we finally found the IMBHs, right?

M82 X-2: AN INTERMEDIATE MASS... NO, THE FIRST PULX

d 20 15 Power 10 5 0.001 0.010 0.100 Frequency (Hz)

Feng+ 2010

- Feng+ 2010: QPOs at v ≈ 3-4 mHz in M82 X-2 (X42.3+59 in their work).
- Scaling the mass with the frequency: M_{source}~ 12000 – 43000 M_☉ A new IMBH?
- Bachetti+ 2014: discovery of spin pulsations at a period P ≃ 1.3 s.

M51 ULX-7: THE DISCOVERY OF THE SPIN PULSATION

- Signal identified through accelerated search techniques in 2018 XMM observations.
- Variable PF (~ 5 20%), even within the same obs.
- Source parameters:
 - \circ P_{spin} ~ 2.8 s
 - $\circ P_{orb} \sim 2 d$
 - \circ $a_x \sin i \sim 28$ lt-s
 - \circ $\dot{P} \sim -10^{-10} \text{ s s}^{-1}$

$$\circ ~~\dot{P}_{sec} \sim \text{--}10^{\text{--9}} ~s~s^{\text{--1}}$$

GET TO KNOW ULX-7 A BIT MORE

- Superorbital modulation: Brightman+ 2020 (P ≃ 38 d), signs of evolution towards P ≃ 44 d (Brightman+ 2022).
- Peak luminosity: $L_X \simeq (5-7) \times 10^{39} \text{ erg s}^{-1}$

Castillo+ 2020

- Persistent source (detected in 13 out of 14 XMM observations).
- 2018: Pulsation detected when the hard component is visible.

ULX-7: THE DISCOVERY OF THE QPO

- 3 XMM obs in 2021/2022: recurring, ks-long flaring feature in the light curve.
- Absent in 2018 observations.

- Broad component (Q < 2) at 1 mHz. QPO (Q > 2) at 0.5 mHz.
- No coherent signal at 2.8 s, PF 3σ upper limit at 6%: absence caused by this feature?

ULX-7: SPECTRAL ANALYSIS

- Model: two multi-temperature disk black bodies. Two absorption component (MW+local).
- Consistent with Castillo+ 2020: no change in spectral state.
- $L_X \simeq 5 \times 10^{39} \text{ erg s}^{-1}$

ULX-7: ARCHIVAL DATA AND POSSIBLE EXPLANATIONS

- Feature detected in 5 consecutive Chandra archival observations.
 Little variability between the two epochs (10 years apart).
- QPO detected at super-Eddington luminosities, like M82 X-2.
 <u>Never present in XMM observations in which the pulsation is detected</u>.
- Our hypothesis: <u>the OPO is decreasing the pulsed</u> <u>fraction of the spin signal</u>.
- Middleton+ 2019: Lense-Thirring precession, QPO arising from precessing winds. Problem: B

 Problem: B
 10⁹ G required. Or maybe not (but beware of fine tuning)...

NGC 7793 P13

• Fastest known PULX:

$$\circ$$
 P_{spin} \simeq 410 ms

$$\dot{P}_{sec} \sim -4 \ x \ 10^{-11} \ s \ s^{-11}$$

$$\circ$$
 P_{orb} $\simeq 65 \text{ d}$

- Only PULX with a known optical counterpart (Motch+ 2014)
- Observed multiple times: Chandra, NICER, NuSTAR, XMM.
 Lots of archival data.
- Long-term monitoring ongoing (see Fuerst+ 2021).

Fuerst+ 2016

P13: PRELIMINARY RESULTS

- Optical observations with HiPERCAM@GTC and SiFAP2@TNG, quasi-simultaneous with X-ray telescopes: work in progress...
- While checking in the X-ray archival data, we found another QPO!
- $v \simeq 0.01$ Hz.
- Plot above: original PDS, where also the spin signal is visible.

P13: ARCHIVAL DATA

- Detected by different telescopes: NICER, NuSTAR, XMM.
- When present, always the same frequency:

 $v \simeq 0.01 \text{ Hz}$

• When both the QPO and the signal are present, the latter has a very low pulsed fraction:

PF ≃ 5-10%

• Typical PF > 20%.

TAKE HOME MESSAGES

- QPOs in the sub-Hz range in ULXs have been widely used as mass-proxy of the accreting compact object: IMBHs candidates.
- M82 X-2 case: be very careful when constraining the mass of the accretor in the ULX using the QPO frequency!
- M51 ULX-7: second PULX to show QPO in the mHz-range.
 When present, always detected at the same frequency.
 No signal detected when the QPO is present: QPO concurrent with a decrease of the pulsed fraction of the signal?
 - If true, the task of detecting spin signals from a PULX (a notoriously difficult task) could be further complicated.
 - • Fraction of PULX over the whole ULX population even higher than previously estimated?
 - QPO in NGC 7793 P13, low PF when present: **common feature among PULXs?**

M51: THE WHIRLPOOL GALAXY

© Chandra

- Pair of interacting galaxies, hosting 9 ULXs (Terashima & Wilson, 2004).
- $d \simeq 8.58$ Mpc.
- At least another **NS-powered ULX: M51** ULX-8 (CRSF in the spectrum, no detected pulsation yet; Brightman+ 2018).

HOW TO DETECT PERIODIC PULSATIONS: POWER SPECTRUM

• How do we detect periodic pulsations? Power Spectrum Density (PSD).

•
$$\mathbf{v}_{i} =$$
Fourier frequencies.

• Ideal case: white noise (in X we count the number of photons).

$$Prob(P_{j,noise} > P_{detect}) = e^{-\frac{P_{detect}}{2}} = e^{-\frac{P_{detect}}{2}}$$

$$a_{j} = \sum_{k=0}^{N-1} x_{k} e^{2\pi i j k/N} \quad v_{j} = \frac{j}{T}, v_{min} = \frac{1}{T}, v_{max} = \frac{1}{2\delta t}$$

$$P_j \equiv \frac{2}{N_{\rm ph}} |a_j|^2, N_{\rm ph} = \sum_{k=0}^{N-1} x_k$$

$$P_{detect}$$

A REAL CASE: RED NOISE

- In a real source there are other noise components.
- Red noise: long-term variability.
- $P_j \propto v_j^{-\alpha}$
- PSD continuum modeling.

POWER SPECTRUM AND ACCELERATED SEARCH TECHNIQUES

- FFT analysis to detect pulsations.
- P ≠ 0: P varies of TP/P², power spread over multiple bins.
- Solution: accelerated search techniques.
- Approach: test over various P/P, searching for optimal correction.

$$t' = t + \frac{1}{2}\frac{\dot{\nu}}{\nu}t^2 = t - \frac{1}{2}\frac{\dot{P}}{P}t^2$$

Case of NGC 5907 ULX-1

Table 3. Best-fit spectral parameters of the latest XMM-Newton observations with the double-disk model.

Observation	$n_{\rm H}{}^a$ (10 ²⁰ cm ⁻²)	kT _{soft} (keV)	Norm.	kT _{hard} (keV)	Norm. (10 ⁻⁴)	Flux ^b (10^{-13} erg cm ⁻² s ⁻¹)	Lum. ^c ($10^{39} \text{ erg s}^{-1}$)	χ^2/dof	n.h.p.
В	$9.1^{+3.1}_{-2.7}$	$0.32^{+0.04}_{-0.03}$	$0.7^{+0.6}_{-0.3}$	$2.63^{+0.20}_{-0.17}$	$5.7^{+1.5}_{-1.3}$	5.37 ± 0.08	5.34 ± 0.08	297.93/309	0.664
С	$8.1^{+2.5}_{-2.3}$	0.33 ± 0.03	$0.6^{+0.4}_{-0.2}$	$2.78^{+0.21}_{-0.17}$	$4.6^{+1.2}_{-1.0}$	5.37 ± 0.07	5.31 ± 0.07	306.91/337	0.879
B+C	$8.5^{+1.7}_{-1.8}$	0.33 ± 0.02	$0.6^{+0.3}_{-0.2}$	$2.71\substack{+0.13 \\ -0.12}$	$5.0^{+0.9}_{-0.8}$	5.37 ± 0.05	5.33 ± 0.05	607.21/651	0.889

Notes. ^(a) The Galactic absorption component was fixed to $n_{\rm H,gal} = 3.3 \times 10^{20} \,\mathrm{cm}^{-2}$ (HI4PI Collaboration et al. 2016). ^(b) Observed flux in the 0.3–10 keV band. ^(c) Unabsorbed luminosity in the 0.3–10 keV band.

Table 4. Best-fit parameters of the spectra during the peaks and the minima (no-peak) of the modulation of the latest XMM-Newton observations.

 We considered the same double-disk model as before.

Observation	$n_{\rm H}{}^a$	kT _{soft}	Norm.	kT_{hard}	Norm.	Flux ^b	Lum. ^c	χ^2/dof	n.h.p.
	$(10^{20}\mathrm{cm}^{-2})$	(keV)		(keV)	(10^{-4})	$(10^{-13} \text{erg cm}^{-2} \text{s}^{-1})$	$(10^{39}\mathrm{ergs^{-1}})$		
В									
peak	$10.0^{+5.8}_{-4.7}$	$0.31^{+0.07}_{-0.05}$	$1.1^{+2.0}_{-0.7}$	$2.7^{+0.4}_{-0.3}$	$7.0^{+3.6}_{-2.7}$	7.4 ± 0.2	7.4 ± 0.2	159.28/162	0.546
no-peak	$7.8^{+3.5}_{-3.1}$	$0.34_{-0.04}^{+0.05}$	$0.5^{+0.5}_{-0.3}$	2.8 ± 0.3	$4.0^{+1.7}_{-1.3}$	4.67 ± 0.09	4.61 ± 0.09	288.73/255	0.072
С			010						
peak	$10.8^{+5.1}_{-4.3}$	$0.30^{+0.05}_{-0.04}$	$1.4^{+1.9}_{-0.8}$	$2.9^{+0.4}_{-0.3}$	$5.7^{+2.8}_{-2.1}$	7.30 ± 0.18	7.46 ± 0.18	175.12/180	0.589
no-peak	$5.8^{+3.0}_{-2.6}$	$0.36^{+0.05}_{-0.04}$	$0.32^{+0.28}_{-0.15}$	$2.8^{+0.3}_{-0.2}$	$4.0^{+1.4}_{-1.1}$	4.62 ± 0.08	4.45 ± 0.08	277.37/277	0.482
B+C									
peak	$10.5^{+3.7}_{-3.2}$	$0.31^{+0.04}_{-0.03}$	$1.3^{+1.2}_{-0.6}$	$2.8^{+0.3}_{-0.2}$	$6.2^{+2.1}_{-1.7}$	7.35 ± 0.13	7.45 ± 0.13	337.69/347	0.63
no-peak	$6.6^{+2.2}_{-2.0}$	$0.35^{+0.04}_{-0.03}$	$0.39^{+0.23}_{-0.14}$	$2.76^{+0.20}_{-0.17}$	$4.0^{+1.0}_{-0.8}$	4.64 ± 0.06	4.52 ± 0.06	567.63/537	0.174

Notes. ^(a) The Galactic absorption component was fixed to $n_{\rm H,gal} = 3.3 \times 10^{20} \,\mathrm{cm}^{-2}$ (HI4PI Collaboration et al. 2016). ^(b) Observed flux in the 0.3–10 keV band. ^(c) Unabsorbed luminosity in the 0.3–10 keV band.

ObsID	VQPO (mHz)	$\Delta v_{\rm QPO}$ (mHz)	V _{char,QPO} (mHz)	QQPO	rms _{QPO} (%)	v _{broad} (mHz)	$\frac{\Delta v_{\text{broad}}}{(\text{mHz})}$	v _{char,broad} (mHz)	Q _{broad}	rms _{broad} (%)	χ^2/dof
0.3–10 keV											
А	$0.449^{+0.019}_{-0.022}$	$0.088^{+0.054}_{-0.035}$	$0.451^{+0.019}_{-0.022}$	5.1	$29.0^{+3.8}_{-4.0}$	$1.20^{+0.26}_{-0.27}$	$2.60^{+0.67}_{-0.53}$	$1.77^{+0.30}_{-0.27}$	0.5	$37.9^{+2.7}_{-2.6}$	27.74/35
В	$0.470\substack{+0.012\\-0.017}$	$0.046^{+0.053}_{-0.046}$	$0.470^{+0.011}_{-0.017}$	10.2	27.4 ± 4.3	$0.92^{+0.18}_{-0.14}$	$1.65^{+0.31}_{-0.26}$	$1.24^{+0.17}_{-0.13}$	0.6	$38.6^{+2.6}_{-2.7}$	24.23/35
С	$0.519\substack{+0.036\\-0.033}$	$0.183^{+0.069}_{-0.061}$	$0.527^{+0.036}_{-0.033}$	2.8	32.0 ± 3.6	$1.56^{+0.25}_{-0.23}$	$2.74_{-0.43}^{+0.53}$	$2.08^{+0.26}_{-0.22}$	0.6	40.3 ± 2.6	46.66/37
A+B+C	$0.565^{+0.034}_{-0.036}$	$0.269^{+0.067}_{-0.054}$	$0.581^{+0.034}_{-0.035}$	2.1	29.5 ± 2.4	1.34 ± 0.17	$2.45_{-0.31}^{+0.37}$	$1.81^{+0.18}_{-0.16}$	0.5	36.1 ± 1.8	128.31/124
0.3–1.5 keV											
A^a	$0.534^{+0.024}_{-0.027}$	$0.148^{+0.062}_{-0.081}$	$0.539^{+0.025}_{-0.028}$	3.6	$32.9^{+3.4}_{-4.0}$	$1.48^{+0.18}_{-0.20}$	$1.56^{+0.76}_{-0.53}$	$1.67^{+0.24}_{-0.22}$	0.9	$32.3^{+2.5}_{-3.4}$	32.26/24
В	$0.467\substack{+0.014\\-0.017}$	$0.061\substack{+0.052\\-0.035}$	$0.468\substack{+0.014\\-0.017}$	7.6	$29.7^{+4.2}_{-4.5}$	$1.04^{+0.40}_{-0.18}$	$1.21\substack{+0.76 \\ -0.48}$	$1.20^{+0.39}_{-0.19}$	0.9	$29.7^{+3.7}_{-3.5}$	43.13/35
С	$0.484^{+0.031}_{-0.028}$	$0.184^{+0.058}_{-0.063}$	$0.493^{+0.031}_{-0.028}$	2.6	$31.8^{+3.5}_{-3.6}$	$1.54^{+0.21}_{-0.24}$	$1.81_{-0.42}^{+0.43}$	$1.79^{+0.21}_{-0.24}$	0.9	33.8 ± 3.2	25.33/35
1.5–10 keV											
A ^a	$0.509^{+0.072}_{-0.044}$	$0.25^{+0.22}_{-0.10}$	$0.525^{+0.075}_{-0.045}$	2.0	$36.9^{+5.1}_{-5.5}$	$1.52^{+0.26}_{-0.43}$	$1.21^{+0.66}_{-0.63}$	$1.64_{-0.42}^{+0.27}$	1.3	$32.7^{+7.6}_{-6.3}$	34.30/23
В	$0.469\substack{+0.014\\-0.022}$	$0.047^{+0.067}_{-0.047}$	$0.470\substack{+0.014\\-0.022}$	9.9	25.8 ± 5.3	$1.03^{+0.19}_{-0.18}$	$1.68^{+0.38}_{-0.31}$	$1.33^{+0.19}_{-0.17}$	0.6	$46.3^{+3.8}_{-3.3}$	22.67/35
С	$0.538\substack{+0.028\\-0.041}$	$0.26^{+0.12}_{-0.10}$	$0.553\substack{+0.030\\-0.042}$	2.1	34.6 ± 5.4	$1.27^{+0.71}_{-0.53}$	$4.08^{+0.98}_{-0.81}$	$2.40^{+0.55}_{-0.44}$	0.3	$47.5^{+3.9}_{-4.9}$	34.71/35

