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Neutron star population synthesis

● We can estimate the total number of neutron stars in our Galaxy:

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108

  v.graber@herts.ac.uk      1



Neutron star population synthesis

● We can estimate the total number of neutron stars in our Galaxy:

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

model birth 
properties with 

Monte-Carlo 
approach

evolve 
properties 
forward in 

time

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108

  v.graber@herts.ac.uk      1



Neutron star population synthesis

● We can estimate the total number of neutron stars in our Galaxy:

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

model birth 
properties with 

Monte-Carlo 
approach

apply filters to 
mimic 

observational 
biases/limits

compare mock 
simulations to 

observations to 
constrain input

evolve 
properties 
forward in 

time

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108

  v.graber@herts.ac.uk      1



Dynamical evolution I 

● Neutron stars are born in star-forming 
regions, i.e., in the Galactic disk along the 
Milky Way’s spiral arms, and receive 
kicks during the supernova explosions.

● We make the following assumptions:
○ Electron-density model (Yao et al., 2017) 

+ rigid rotation with T = 250 Myr.
○ Exponential disk with scale height 

hc = 0.18 kpc (Wainscoat et al., 1992).
○ Single-component Maxwell kick- 

velocity distribution with dispersion 
σk = 265 km/s (Hobbs et al., 2005).

○ Galactic potential (Marchetti et al., 2019).

Artistic 
illustration of 

the Milky 
Way (credit: 
NASA JPL)
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We use this information 
to determine pulsar 

positions and velocities.



Dynamical evolution II 

● For our Galactic model ΦMW, we evolve the stars’ position & velocity by solving 
Newtonian equations of motion in cylindrical galactocentric coordinates:

Galactic evolution tracks for hc = 0.18 kpc, σ = 265 km/s.

Top view Side view
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Magneto-rotational evolution I 

● The neutron-star magnetosphere exerts a torque 
onto the star. This causes spin-down and the 
alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the Hall 
effect and Ohmic dissipation in the outer stellar 
layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:

○ Initial periods follow a log-normal with 
μlog P and σlog P (Igoshev et al., 2022)

○ Initial fields follow a log-normal 
with μlog B and σlog B (Gullón et al., 2014)

○ Above τ ~ 106 yr, field decay follows 
a power-law with B(t) ~ B0 (1 + t/τ)a.
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● The neutron-star magnetosphere exerts a torque 
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alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the Hall 
effect and Ohmic dissipation in the outer stellar 
layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:

○ Initial periods follow a log-normal with 
μlog P and σlog P (Igoshev et al., 2022)

○ Initial fields follow a log-normal 
with μlog B and σlog B (Gullón et al., 2014)

○ Above τ ~ 106 yr, field decay follows 
a power-law with B(t) ~ B0 (1 + t/τ)a.

We vary the five free 
parameters μlog P, μlog B, 
σlog P, σlog B, and a.
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Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve 
two coupled ordinary differen- 
tial equations for the period and 
the misalignment angle (Aguilera et 
al., 2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field.

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.
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Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve 
two coupled ordinary differen- 
tial equations for the period and 
the misalignment angle (Aguilera et 
al., 2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field.

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.

Period period-derivative 
evolution tracks for 

μlog P = -0.6, σlog P = 0.3, 
μlog B = 13.25, σlog B = 0.75.
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Radio emission and detection 

● The stars’ rotational energy Erot is converted into 
coherent radio emission. We assume that the 
corresponding radio luminosity Lradio is proportio- 
nal to the loss of Erot (Faucher- Giguère & Kaspi, 2006; 
Gullón et al., 2014). L0 is taken from observations.

● As the radio emission is beamed, between ~60-90% 
of pulsars do not point towards us. For those that do 
intercept our line of sight, we compute the radio flux 
Sradio and the pulse width W.
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Radio emission and detection 

● The stars’ rotational energy Erot is converted into 
coherent radio emission. We assume that the 
corresponding radio luminosity Lradio is proportio- 
nal to the loss of Erot (Faucher- Giguère & Kaspi, 2006; 
Gullón et al., 2014). L0 is taken from observations.

● As the radio emission is beamed, between ~60-90% 
of pulsars do not point towards us. For those that do 
intercept our line of sight, we compute the radio flux 
Sradio and the pulse width W.

A pulsar counts as detected, if it exceeds the sensitivity 
threshold for a survey recorded with a specific radio telescope.
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Three pulsar surveys

● We compare our simulated populations 
with three surveys from Murriyang 
(the Parkes Radio Telescope):
○ Parkes Multibeam Pulsar Survey 

(PMPS): 1,009 isolated pulsars
○ Swinburne Parkes Multibeam 

Pulsar Survey (SMPS): 218 isol. p.
○ High Time Resolution Universe 

Survey (HTRU): 1,023 isol. pulsars
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with three surveys from Murriyang 
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○ Parkes Multibeam Pulsar Survey 

(PMPS): 1,009 isolated pulsars
○ Swinburne Parkes Multibeam 

Pulsar Survey (SMPS): 218 isol. p.
○ High Time Resolution Universe 

Survey (HTRU): 1,023 isol. pulsars

Can we constrain birth properties 
by looking at a current snapshot 

of the pulsar population? 
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Comparing models and data

● Population synthesis models are complex and have many free parameters. 
Traditional methods (e.g., by-eye studies, χ2- and KS-tests, annealing methods, 
MCMC) for parameter inference scale poorly and require simplified models.

● To constrain our free parameters, we want to perform Bayesian inference: 
based on some prior knowledge π(θ), a stochastic model and an observation x, 
infer the most likely distribution P(θ|x) for our model parameters θ given:
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Comparing models and data

● Population synthesis models are complex and have many free parameters. 
Traditional methods (e.g., by-eye studies, χ2- and KS-tests, annealing methods, 
MCMC) for parameter inference scale poorly and require simplified models.

● To constrain our free parameters, we want to perform Bayesian inference: 
based on some prior knowledge π(θ), a stochastic model and an observation x, 
infer the most likely distribution P(θ|x) for our model parameters θ given:

For complex simulators, the likelihood is 
defined implicitly and often intractable. This 

is overcome with simulation-based (likelihood- 
free) inference (see e.g. Cranmer et al., 2020).
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Simulation-based inference

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we can use the following approach:
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Simulation-based inference

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we can use the following approach:
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We use a neural network to learn a probabilistic 
association between the simulated data and the 

underlying model parameters. We directly estimate 
the posterior using Neural Posterior Estimation 

(NPE) (e.g., Papamakarios & Murray, 2016).



Simulator output

● We simulate 360,000 populations by varying the 5 
magneto-rotational parameters and generate densi- 
ty maps for 3 surveys in PP-plane (Graber et al., 2024).
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○ μlog P ∈ Uniform(-1.5, -0.3)
○ σlog P ∈ Uniform(0.1, 1.0)
○ μlog B ∈ Uniform(12.0, 14.0)
○ σlog B ∈ Uniform(0.1, 1.0)
○ alate ∈ Uniform(-3.0, -0.5)

Test simulation for 
μlog P = -0.85, σlog P = 0.51, 
μlog B = 13.19, σlog B = 0.96 

and alate = -0.86.
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Neural network setup

● To perform SBI, we use the PyTorch package sbi (Tejero-Cantero et al., 2020; 
https://www.mackelab.org/sbi/). Our trainable neural network has two parts:
○ CNN (see Ronchi et al., 2021): compresses the maps into a latent vector.
○ Mixture density network (MDN): posterior is approximated by a mixture 

of 10 Gaussians components; we learn the means, stds and coefficients. 

● We use Kaiming initiali- 
sation for the CNN and 
Xavier for the MDN, 89% 
of data for training, 10% 
for validation and 1% for 
testing, a batch size of 8 
& learning rate of 5 x 10-4.
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https://www.mackelab.org/sbi/


Inference on test sample

● As our conditional density esti- 
mator is represented by a neural 
network, we can directly evaluate 
the posterior distributions for a 
given (test) observation.
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We recover narrow and 
well-defined posteriors for all five 
parameters that typically contain 

the ground truth (parameters used 
for the forward simulation) at the 

95% credibility level.



Ensemble of networks

● Our inferred posteriors are sensitive to neural network setup. To analyse 
the robustness of our results, we perform 22 ML experiments by varying 
network hyper parameters, survey input, map resolution, preprocessing.

● We combine posteriors from 19 experiments with well-behaved training 
behaviour into an ensemble posterior to obtain conservative predictions.
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Observed population

● We apply our ensemble network to 
infer on the observed population of 
isolated radio pulsars at 95% CI:

  v.graber@herts.ac.uk     14



Observed population

● We apply our ensemble network to 
infer on the observed population of 
isolated radio pulsars at 95% CI:
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We find tight constraints for B0 and P0 
parameters. Larger uncertainties and bi- 
modal posterior in alate hint at insufficient 

modelling of late-time B-field decay.



Two sanity checks

● Despite potential issues with the late-time magnetic field 
decay, rerunning our simulator with the best parameters 
produces a reasonable PP diagram.

● Our framework allows us to constrain 
the corresponding pulsar birth rate:
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This is in good agreement with core- 
collapse supernova rates, i.e., 1.63 ± 0.46 

per century (Rozwadowska et al., 2021).



Take-home points and outlook

● Population synthesis bridges 
gap between detected pulsars 
and the invisible population.

● It allows us to constrain birth 
rates and NS birth properties.
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● SBI has opened up the possibility 
for robust statistical inference 
with complex simulators.

● We successfully used SBI to infer 
magneto-rotational parameters.



Take-home points and outlook

● We are currently working to improve our approach:
○ Model multi-wavelength emission and observations.
○ Remove the need for large training datasets by using an 

sequential SBI approach that adaptively simulates data.

● Population synthesis bridges 
gap between detected pulsars 
and the invisible population.

● It allows us to constrain birth 
rates and NS birth properties.
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● SBI has opened up the possibility 
for robust statistical inference 
with complex simulators.

● We successfully used SBI to infer 
magneto-rotational parameters.



THANK YOU

Cassiopeia A supernova remnant 
(credit: NASA/CXC/SAO)



Magneto-rotational evolution - analytics

● For a given initial rotation period, magnetic field strength and inclination 
angle (uniformly distributed along the sphere), the evolution of a neutron star 
is determined by three ordinary differential equations. The first two are

The к are determined from simulations. For a realistic pulsar magnetosphere 
filled with plasma we have к0 ≃ к1 ≃ к2 ≃ 1 (Spitkovsky 2006; Philippov et al., 2014).

● From the induction equation, we deduce for the B-field (Aguilera et al., 2008):
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Improved B-field prescription

● To provide a more realistic description of the magnetic field decay, we fit  
an analytical function to B-field evolution curves obtained from 2D magneto- 
thermal simulations (Viganó et al., 2021) for various fields. As they are only valid 
up to  106 yr, we extend the late-time behaviour with a power law as follows:
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Radiometer equation

● Following Lorimer & Kramer (2005), we convert the intrinsic (bolometric) radio 
flux Sradio into a flux density measured at a given frequency. We then account 
for the fact that the intrinsic pulse width is broadened to weff (due to inter- 
stellar scattering, dispersion and finite sampling resolution of a detector) and 
compute the period-averaged flux Smean  observed by a radio telescope.

● With these estimates and information specific to the PMPS, SMPS and HTRU 
surveys, we determine the signal-to-
noise-ratio for a given simulated pulsar 
using the radiometer equation:

Haslam sky temperature map taken 
from Remazeilles et al., (2015).
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SBI approaches

● Different approaches (all relying on deep learning) exist to learn a probabilis- 
tic association between the simulated data and the underlying parameters. 
These algorithms essentially focus on different pieces of Bayes’ theorem:
○ Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016)
○ Neural Likelihood Estimation (NLE) (e.g., Papamakarios et al., 2019)
○ Neural Ratio Estimation (NRE) (e.g., Hermans et al., 2020; Delaunoy et al., 2022)

● All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth 
step to workflow. Instead of sampling from the prior, we adaptively generate 
simulations from the posterior. This typically requires fewer simulations.

We focus on NPE. This allows us to directly learn the posterior 
distribution. In contrast, NLE and NRE need an extra (potentially 
time consuming) MCMC sampling step to construct a posterior.
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Neural network training behaviour

● Typical learning 
behaviour for our 
simulation-based 
inference experiments.

● The log-probability 
increases as a func- 
tion of training epochs 
for the training and 
validation loss. 

● We see some variation 
in the validation loss 
but little overfitting.
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22 different ML experiments
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Quality check: coverage calculation

● A measure that provides information 
on the quality of our posterior is the 
coverage. I.e., we take a frequentist 
approach and determine how often 
our true parameters fall into the (1-α)% 
credible interval under the model. 

● By definition, a (1-α)% credibility level 
covers the true parameter in (1-α)% 
of our analyses, resulting in a diago- 
nal line. In this case, the posterior is 
neither conservative (too wide; 
above diagonal) nor overconfident 
(too narrow; below diagonal).
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Comparison to other studies

● A comparison with earlier studies is 
difficult due to different simulation 
models and inference methods.
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